World Journal of Agricultural Research
ISSN (Print): 2333-0643 ISSN (Online): 2333-0678 Website: Editor-in-chief: Rener Luciano de Souza Ferraz
Open Access
Journal Browser
World Journal of Agricultural Research. 2019, 7(3), 76-87
DOI: 10.12691/wjar-7-3-1
Open AccessArticle

Genotype x Environment Interactions on Seed Yield of Inter-racial Common Bean Lines in Kenya

Jean M. Mondo1, 2, , Paul M. Kimani1 and Rama D. Narla1

1Department of Plant Science and Crop Protection, University of Nairobi, P.O. Box 29053-00625, Nairobi, Kenya

2Faculty of Agriculture and Environmental Sciences, Université Evangélique en Afrique (UEA), P.O. Box 3323, Bukavu, Democratic Republic of Congo

Pub. Date: May 05, 2019

Cite this paper:
Jean M. Mondo, Paul M. Kimani and Rama D. Narla. Genotype x Environment Interactions on Seed Yield of Inter-racial Common Bean Lines in Kenya. World Journal of Agricultural Research. 2019; 7(3):76-87. doi: 10.12691/wjar-7-3-1


Determination of yield stability is critical in identifying new common bean cultivars with either specific or broad adaptation in target environments. This study aimed to assess genotype by environment (G x E) effects on agronomic performance of 78 F1.7 lines selected with molecular markers for multiple disease resistance from 16 inter-racial bean populations. Field trials were conducted in low-, medium- and high altitude conditions in Kenya. Data collected on seed yield were subjected to additive main-effects and multiplicative interaction (AMMI) model to separate additive variance from the G x E interaction and to determine the stability of genotypes across locations. Results showed that G x E effects were highly significant (P<0.001), implying that tested lines behaved differently across the three locations. Better yields were recorded from high altitude Tigoni site while the lowest were from low altitude Mwea site. Yield across sites ranged from 1,518 to 2,748; 1,324 to 3,860; 1,537 to 3,722 and 1,010 to 3,718 kg ha-1 for pinto, red mottled, red kidney and mixed color bean lines, respectively. Number of pods plant-1 was the most strongly correlated to seed yield and could be, therefore, used as an indirect selection criterion for seed yield. The environment was responsible for the largest part of yield variability (86.4%, 84.8%, 82.3% and 49.5% for pinto, red kidney, red mottled and mixed color bean lines, respectively). KMA13-22-21 and KMA13-29-21 were the most stable high yielding lines across locations. Higher yielding lines were the most unstable across sites. Two pinto, four red kidney, 15 red mottled, and two mixed color lines did better than their corresponding checks with yield advantages of 7.6, 14.3, 71.5, and 34.9%, respectively. These lines should, therefore, be selected for further testing and release.

Phaseolus vulgaris inter-racial crosses gamete selection market class AMMI model

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Singh, S.P., P. Gepts & D. Debouck (1991). Races of common bean (Phaseolus vulgaris Fabaceae). Economic Botany 45(3): 379-396.
[2]  Beebe, S., A.V. Gonzalez & J. Rengifo (2000). Research on trace minerals in the common bean. Food and Nutrition Bulletin 21(4): 387-391.
[3]  Kwak, M., O. Toro, D. Debouck & P. Gepts (2012). Multiple origins of the determinate growth habit in domesticated common bean (Phaseolus vulgaris L.). Annals of Botany 110(8):1573-1580.
[4]  Singh, S.P. (2001). Broadening the genetic base of common bean cultivars: A Review. Crop Science 41(6): 1659-1675.
[5]  Singh, S.P, H. Teran, C.G. Muñoz & J.M. Osorno (2002). Selection for seed yield in Andean intra-gene pool and Andean × Middle American inter-gene pool populations of common bean. Euphytica 127(3): 437-444.
[6]  Terán, H. & S.P. Singh (2002). Comparison of sources and lines selected for drought resistance in common bean. Crop Science 42(1): 64-70.
[7]  Sichilima, T., L. Mapemba & G. Tembo (2016). Drivers of dry common beans trade in Lusaka, Zambia: A trader’s perspective. Sustainable Agriculture Research 5(2): 15.
[8]  Kimani, P.M., R. Buruchara, K. Ampofo, M. Pyndji, R. Chirwa & R. Kirkby (2005). Breeding beans for smallholder farmers in Eastern, Central and Southern Africa: Constraints, achievements and potential. In: Pan-African Bean Research Network (PABRA) Millennium Workshop, 28 May - 1 June, Arusha, Tanzania. pp. 11-28.
[9]  Welsh, W., W. Bushuk, W. Roca & S.P. Singh (1995). Characterization of agronomic traits and markers of recombinant inbred lines from intra- and interracial populations of Phaseolus vulgaris L. Theoretical and applied genetics 91(1): 169-177.
[10]  Kelly, J.D. & M.W. Adams (1987). Phenotypic recurrent selection in ideotype breeding of pinto beans. Euphytica 36(1): 69-80.
[11]  Kaizzi, K.C., J. Byalebeka, O. Semalulu, I.N. Alou, W. Zimwanguyizza, A. Nansamba, E. Odama, P. Musinguzi, P. Ebanyat, T. Hyuha, A.K. Kasharu & C.S. Wortmann (2012). Optimizing smallholder returns to fertilizer use: Bean, soybean and groundnut. Field Crops Research 127: 109-119.
[12]  Ronner, E., K. Descheemaeker, C.J.M. Almekinders, P. Ebanyat & K.E. Giller (2017). Farmers’ use and adaptation of improved climbing bean production practices in the highlands of Uganda. Agriculture, Ecosystems and Environment 261: 186-200.
[13]  FAO (2018). FAOSTAT: FAO Statistical Databases. Available online at:
[14]  Wortmann, C.S., R.A. Kirkby, C.A. Eledu & D.J. Allen (1998). Atlas of common bean (Phaseolus vulgaris L.) production in Africa. No 297. CIAT, Cali, Colombia.
[15]  Okii, D., P. Tukamuhabwa, G. Tusiime, H. Talwana, T. Odong, C. Mukankusi, A. Male, W. Amongi, S. Sebuliba, P. Paparu, S. Nkalubo, M. Ugen, S. Buah & P. Gepts (2017). Agronomic qualities of genetic pyramids of common bean developed for multiple-disease-resistance. African Crop Science Journal 25(4): 457-472.
[16]  Ashango, Z., B. Amsalu, K. Tumisa, K. Negash & A. Fikre (2016). Seed Yield Stability and Genotype x Environment Interaction of Common Bean (Phaseolus vulgaris L.) Lines in Ethiopia. International Journal of Plant Breeding and Crop Science 3(2): 135-144.
[17]  Tadesse, T., A. Tekalign, B. Mulugeta & G. Sefera (2017). Identification of Stability and Adaptability of Small Red Bean Cultivars Using AMMI Analysis. Plant 5(6): 99-103.
[18]  Corrêa, A.M., A.R.S. Lima, D.C. Braga, G. Ceccon, P.E. Teodoro, A.C. Silva Junior & F.A. Silva (2015). Agronomic Performance and Genetic Variability among Common Bean Genotypes in Savanna/Pantanal Ecotone. Journal of Agronomy 14(3): 175-179.
[19]  Corrêa, A.M., M.C. Gonçalves & P.E. Teodoro (2016). Pattern analysis of multi-environment trials in common bean genotypes. Bioscience Journal 32(2): 328-336.
[20]  Wortmann, C.S. & D.J. Allen (1994). African bean production environments: their definition, characteristics and constraints. Network on Bean Research in Africa, Occasional Paper Series No. 11, Dar es Salaam, Tanzania.
[21]  Wahome, S.W., P.M. Kimani, J.W. Muthomi, R.D. Narla & R. Buruchara (2011). Multiple disease resistance in snap bean genotypes in Kenya. African Crop Science Journal 19(4): 289-302.
[22]  Njoki, N.W.B. (2013). Breeding for durable resistance to angular leaf spot (Pseudocercospora griseola) in common bean (Phaseolus vulgaris) in Kenya. Ph.D Thesis, University of Kwa Zulu-Natal, Republic of South Africa, p.145.
[23]  Jaetzold, R., H. Schmidt, B. Hornetz, and C. Shisanya. 2006. Farm Management Handbook of Kenya. Vol II, Natural conditions and farm management information, 2nd Edition Part B Central Kenya. Subpart B2. Central Province.
[24]  Schoonhoven, A. & M.A. Pastor-Corrales (1987). Standard System for the Evaluation of Bean Germplasm. Centro Internacional de Agricultura Tropical, CIAT Apartado Areo 6713 Cali, Colombia, p.56.
[25]  VSN International (2014). GenStat reference manual (17th edition). VSN International, Hemel Hempstead, UK.
[26]  USDA and NRCS (2007). Statistix 8 User Guide for the Plant Materials Program, USA, p.80.
[27]  Gauch, G.H. & R.W. Zobel (1997). Interpreting mega-environments and targeting genotypes. Journal of Crop Science 37(2):311-326.
[28]  Gauch, H.G., H.P. Piepho & P. Annicchiarico (2008). Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop science 48(3): 866-889.
[29]  Zobel, R.W., M.J. Wright & H.G. Gauch (1988). Statistical analysis of a yield trial. Agronomy Journal 80(3): 388-393.
[30]  Purchase, J.L. (1997). Parametric analysis to describe genotype x environment interaction and yield stability in winter wheat. PhD. Thesis. University of the Orange Free State.
[31]  Samonte, S.O.P., L.T. Wilson, A.M. McClung & J.C. Medley (2005). Targeting cultivars onto rice growing environments using AMMI and SREG GGE biplot analyses. Crop Science 45(6): 2414-2424.
[32]  Assefa, T., I.M. Rao, S.B. Cannon, J. Wu, Z. Gutema, M. Blair, P. Otyama, F. Alemayehu & B. Dagne (2017). Improving adaptation to drought stress in white pea bean (Phaseolus vulgaris L.): Genotypic effects on grain yield, yield components and pod harvest index. Plant Breeding 136(4):548-561.
[33]  Mwale, V.M., J.M. Bokosi, C.M. Masangano, M.B. Kwapata, V.H. Kabambe & C. Miles (2008). Yield performance of dwarf bean (Phaseolus vulgaris L.) lines under Researcher Designed Farmer Managed (RDFM) system in three bean agro-ecological zones of Malawi. African Journal of Biotechnology 7(16).
[34]  Beebe, S.E., I.M. Rao, M.W. Blair & J.A. Acosta-Gallegos (2013). Phenotyping common beans for adaptation to drought. Frontiers in Plant Physiology 4:35.
[35]  Rao, I., S. Beebe, J. Polania, J. Ricaurte, C. Cajiao, R. García & M. Rivera (2013). Can tepary bean be a model for improvement of drought resistance in common bean? African Crop Science Journal 21(4): 265-281.
[36]  Rao, I.M., S.E. Beebe, J. Polania, M. Grajales, C. Cajiao, J. Ricaurte, R. García & M. Rivera (2017). Evidence for genotypic differences among elite lines of common bean in the ability to remobilize photosynthate to increase yield under drought. Journal of Agricultural Science 155(6): 857-875.
[37]  White, J.W. & S.P. Singh (1991). Breeding for adaptation to drought. pp. 501-560. In Schoonhoven, A.V., and O. Voysest (Eds.). Common Beans: Research for Crop Improvement. C.A.B. International, CIAT, Cali, Colombia.
[38]  Blair, M.W., C.H. Galeano, E. Tovar, M.C.M. Torres, A.V. Castrillón, S.E. Beebe & I.M. Rao (2012). Development of a Mesoamerican intra-gene pool genetic map for quantitative trait loci detection in a drought tolerant × susceptible common bean (Phaseolus vulgaris L.) cross. Molecular Breeding 29(1): 71-88.
[39]  Mwale, V.M., J.M. Bokosi, C.M. Masangano, M.B. Kwapata, V.H. Kabambe & C. Miles (2009). Performance of climber common bean (Phaseolus vulgaris L.) lines under Researcher Designed Farmer Managed (RDFM) system in three bean agro-ecological zones of Malawi. African Journal of Biotechnology 8(11): 2460-2468.
[40]  Singh, S.P. (1989). Patterns of variation in cultivated common bean (Phaseolus vulgaris, Fabaceae). Economic Botany 43(1): 39-57.
[41]  Singh, S.P. & C.A. Urrea (1995). Inter- and intra-racial hybridization and selection for seed yield in early generations of common bean, Phaseolus vulgaris L. Euphytica 81(2):131-137.
[42]  Lima, E.R., A.S. Santiago, A.P. Araújo & M.G. Teixeira (2005). Effects of the size of sown seed on growth and yield of common bean cultivars of different seed sizes. Brazilian Journal of Plant Physiology 17(3): 273-281.
[43]  Debouck, D.G., O. Toro, O.M. Paredes, W.C. Johnson & P. Gepts (1993). Genetic diversity and ecological distribution of Phaseolus vulgaris in northwestern South Africa. Economic Botany 47(4): 408-423.
[44]  Darkwa, K., D. Ambachewa, H. Mohammed, A. Asfawa & M.W. Blair (2016). Evaluation of common bean (Phaseolus vulgaris L.) genotypes for drought stress adaptation in Ethiopia. The Crop Journal 4(5): 367-376.
[45]  Mekbib, F. (2003). Yield stability in common bean (Phaseolus vulgaris L.) genotypes. Euphytica 130(2): 147-153.
[46]  Lad, D.B., N. Longmei & U.M. Borle (2017). Studies on Genetic Variability, Association of Characters and Path Analysis in French Bean (Phaseolus vulgaris L.). International Journal of Pure and Applied Bioscience 5(6): 1065-1069.
[47]  Polania, J.A., C. Poschenrieder, S. Beebe & I.M. Rao (2016). Effective Use of Water and Increased Dry Matter Partitioned to Grain Contribute to Yield of Common Bean Improved for Drought Resistance. Frontiers in Plant Science 7: 660.
[48]  Gereziher, T., E. Seid & G. Bisrat (2017). Performance evaluation of common bean (Phaseolus vulgaris L.) varieties in Raya Valley, Northern Ethiopia. African Journal of Plant Science 11(1):1-5.
[49]  Tamene, T.T & S.G. Tadese (2014). Sites Regression GGE Biplot Analysis of Haricot Bean (Phaseolus vulgaris L.) Genotypes in three Contrasting Environments. World Journal of Agricultural Research 2(5): 228-236.
[50]  Tadesse, T., A. Tekalign, B. Mulugeta & G. Sefera (2018). Evaluation of the effect of genotype, environment and genotype x environment interaction on white common bean varieties using additive main effect and multiplicative interaction (AMMI) analysis in the mid altitude of Bale zone, Southeastern Ethiopia. African Journal of Agricultural Research 13(7):338-344.
[51]  Swegarden, H.R., C.C. Sheaffer & T.E. Michaels (2016). Yield stability of heirloom dry bean (Phaseolus vulgaris L.) cultivars in midwest organic production. HortScience 51(1):8-14.
[52]  Lin, C.S., M.R. Binns & L.P. Lefkovitch (1986). Stability analysis: where do we stand? Crop Science 26(5): 894-900.