World Journal of Analytical Chemistry
ISSN (Print): 2333-1178 ISSN (Online): 2333-1283 Website: http://www.sciepub.com/journal/wjac Editor-in-chief: Raluca-Ioana Stefan-van Staden
Open Access
Journal Browser
Go
World Journal of Analytical Chemistry. 2015, 3(1A), 9-14
DOI: 10.12691/wjac-3-1A-3
Open AccessResearch Article

Antioxidant Capacity and Determination of Total Phenolic Compounds in Daisy (Matricaria chamomilla, Fam. Asteraceae)

Mahfuz Elmastaș1, , Sed Çinkiliç1 and Hassan Y. Aboul-Enein2

1Gaziosmanpaşa University, Faculty of Science and Arts, Department of Chemistry 60240-Tokat-Turkey

2Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre., Giza 12622, Egypt

Pub. Date: September 06, 2015
(This article belongs to the Special Issue Recent Development of Pharmaceutical and Biomedical Analysis)

Cite this paper:
Mahfuz Elmastaș, Sed Çinkiliç and Hassan Y. Aboul-Enein. Antioxidant Capacity and Determination of Total Phenolic Compounds in Daisy (Matricaria chamomilla, Fam. Asteraceae). World Journal of Analytical Chemistry. 2015; 3(1A):9-14. doi: 10.12691/wjac-3-1A-3

Abstract

Daisy is a medicinal plant which is used for treating several diseases. This investigation describes the antioxidant capacity of different parts of daisy, collected from Tokat-Turkey, using various antioxidant assays. It was understood that all parts (flower, stem, and whole herb) of daisy have antioxidant activity. It was determined that there is extra activity of reduction power in the whole herb, extra activity of scavenging of superoxide anion radical in the stem of the plant, extra activity of total antioxidant activity in the whole herb, extra activity of metal chelating activity in the flower, but there is almost equal activity of scavenging free radical in the flower, in the stem and in the whole herb. In addition, total phenolic compounds were analyzed. The concentration of total phenolic compounds was 29.4 µg kg-1 dry weight in the flower, 22.3 µg kg-1 dry weight in the stem, and 32.1 µg kg-1 dry weight in the whole herb.

Keywords:
antioxidant capacity phenolic compounds free radical matricaria chamomilla (Fam. Asteraceae) Daisy

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Gardiner, P. Complementary, holistic, and integrative medicine: chamomile. Pediatrics in review / American Academy of Pediatrics, 28: 16-18. 2007.
 
[2]  Srivastava, J. K., Gupta, S. Extraction, characterization, stability and biological activity of flavonoids isolated from chamomile flowers. Molecular and Cellular Pharmacology, 1: 138-147. 2009.
 
[3]  McKay, D. L., Blumberg, J. B. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytotherapy Research, 20: 619-633. 2006.
 
[4]  Ganzera, M., Schneider, P., Stuppner, H. Inhibitory effects of the essential oil of chamomile (Matricaria recutita L.) and its major constituents on human cytochrome P450 enzymes. Life Sciences, 78: 856-861. 2006.
 
[5]  Rekka, E. A., Kourounakis, A. P., Kourounakis, P. N. Investigation of the effect of chamazulene on lipid peroxidation and free radical processes. Research Communications in Molecular Pathology and Pharmacology, 92: 361-364.1996.
 
[6]  Avallone, R., Zanoli, P., Puia, G., Kleinschnitz, M., Schreier, P., Baraldi, M. Pharmacological profile of apigenin, a flavonoid isolated from Matricaria chamomilla. Biochemical Pharmacology, 59: 1387-1394. 2000.
 
[7]  Svehliková, V., Bennett, R. N., Mellon, F. A., Needs, P. W., Piacente, S., Kroon, P. A., Bao, Y. Isolation, identification and stability of acylated derivatives of apigenin 7-O-glucoside from chamomile (Chamomilla recutita [L.] Rauschert). Phytochemistry, 65: 2323-2332. 2004.
 
[8]  Gulcin, I., Sat, I.G., Beydemir, S., Elmastas, M., Kufrevioglu, O. I. Comparison of antioxidant activity of clove (Eugenia caryophylata Thunb) buds and lavender (Lavandula stoechas L.). Food Chemistry, 87: 393-400. 2004.
 
[9]  Kumaran, A., Karunakaran, R. J. Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chemistry, 97:109-1014. 2006.
 
[10]  Wichi, H. P. Enhanced tumour development by butylated hydroxyanisole (BHA) from the prospective of effect on forestomach and oesophageal squamous epithelium. Food and Chemical Toxicology, 26: 717-7123. 1988.
 
[11]  Elmastas, M., Isildak, O., Turkekul, I., Temur, N. Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. Journal of Food Composition and Analysis, 20: 337-345. 2007.
 
[12]  Elmastas, M., Turkekul, I., Ozturk, L., Gulcin, I., Isildak, O., Aboul-Enein, H. Y. Antioxidant activity of two wild edible mushrooms (Morchella vulgaris and Morchella esculanta) from North Turkey. Combinatorial Chemistry & High Throughput Screening, 9: 443-448. 2006.
 
[13]  Moure, A., Cruz, J. M., Franco, D., Domnguez, J. M., Sineiro, J., Domnguez, H., Jose, Nunez, M.; Parajo, J. C. Natural antioxidants from residual sources. Food Chemistry, 72: 145-171. 2001.
 
[14]  Parejo, I., Viladomat, F., Bastida, J., Rosas-Romero, A., Flerlage, N., Burillo, J., Codina, C. Comparison between the radical scavenging activity and antioxidant activity of six distilled and nondistilled mediterranean herbs and aromatic plants. Journal of Agricultural and Food Chemistry, 50: 6882-6890. 2002.
 
[15]  Mitsuda, H., Yuasumoto, K. K., Iwami, K. Antioxidation action of indole compounds during the autoxidation of linoleic acid. Japan Society of Nutrition and Food Science, 19: 210-214. 1996.
 
[16]  Oyaizu, M. Studies on product of browning reaction prepared from glucose amine. Japanese Journal of Nutrition, 44: 307-315. 1986.
 
[17]  Dinis, T. C., Maderia, V. M., Almeida, L. M. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and biophysics, 315: 161-169. 1994.
 
[18]  Blois, M. S. Antioxidant determinations by the use of a stable free radical. Nature, 26: 1199-1200. 1958.
 
[19]  Zhishen, J., Mengcheng, T., Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64: 555-559. 1999.
 
[20]  Slinkard, J., Singleton, V. L. Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28: 49-55. 1979.
 
[21]  Gulcin, I., Elias, R., Gepdiremen, A., Taoubi, K., Koksal, E. Antioxidant secoiridoids from fringe tree (Chionanthus virginicus L.). Wood Science and Technology, 43: 195-212. 2009.
 
[22]  Yen, G. C., Duh, P. D. Scavenging effect of methanolic extract of peanut hulls on free radical and active oxygen species. Journal of Agricultural and Food Chemistry, 42: 629-32. 1994.
 
[23]  Velioglu, Y. S., Mazza, G., Gao, L., Oomah, B. D. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46: 4113-4117. 1998.
 
[24]  Perry, G., Raina, A. K., Nunomura, A., Wataya, T., Sayre, L. M., Smith, M. A. How important is oxidative damage? Lessons from Alzheimer's disease. Free Radical Biology & Medicine, 28: 831-834. 2000.
 
[25]  Cemek, M., Kaga, S., Simsek, N., Buyukokuroglu, M. E., Konuk, M. Antihyperglycemic and antioxidative potential of Matricaria chamomilla L. in streptozotocin-induced diabetic rats. Journal of Natural Medicines, 62: 284-93. 2008.
 
[26]  Siddhuraju, P., Mohan, P. S., Becker, K. Studies on the antioxidant activity of Indian Laburnum (Cassia fistula L.): a preliminary assessment of crude extracts from stem bark, leaves, flowers and fruit pulp. Food Chemistry, 79: 61-67. 2002.
 
[27]  Chung, Y. C., Chang, C. T., Chao, W. W., Lin, C. F., Chou, S. T. Antioxidative activity and safety of the 50 ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1. Journal of Agricultural and Food Chemistry, 50: 2454-2458. 2002.
 
[28]  Wood, L. G., Gibson, P. G., Garg, M. L. A review of the methodology for assessing in vivo antioxidant capacity. Journal of the Science of Food and Agriculture, 86: 2057-2066. 2006.
 
[29]  Halliwell, B. Oxidative stress and neurodegeneration: where are we now? Journal of Neurochemistry, 97: 1634-1658. 2006.
 
[30]  Bendini, A., Cerretani, L., Pizzolante, L., Toschi, T. G., Guzzo, F., Ceoldo, S., Marconi, A. M., Andreetta, F., Levi, M. Phenol content related to antioxidant and antimicrobial activities of Passiflora spp. extracts. European Food Research and Technology, 223: 102-109. 2006.
 
[31]  Özcelik, B., Lee, J. H., Min, D. B. Effects of light, oxygen and pH on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method to evaluate antioxidants. Journal of Food Science, 68: 487-90. 2003.
 
[32]  Amarowicz, R., Pegg, R. B., Rahimi-Moghaddam, P., Barl, B., Weil, J. A. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chemistry, 84: 551-562. 2004.
 
[33]  Wickens, A. P. Ageing and the free radical theory. Respiration Physiology, 128: 379-391. 2001.
 
[34]  Pietta, P. G. Flavonoids as antioxidants. Journal of Natural Products, 63: 1035-1042. 2000.
 
[35]  Liu, F., Ooi, V. E., Chang, S. T. Free radical scavenging activities of mushroom polysaccharide extracts. Life Sciences, 60: 763-771. 1997.
 
[36]  Cos, P., Ying, L., Calomme, M., Hu, J. P., Cimanga, K., Van Poel, B., Pieters, L., Vlietinck, A. J., Vanden, B. D. Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. Journal of Natural Products, 61: 71-76. 1998.
 
[37]  Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., Byrne, D. H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19: 669-675. 2006.