Turkish Journal of Analysis and Number Theory
ISSN (Print): 2333-1100 ISSN (Online): 2333-1232 Website: http://www.sciepub.com/journal/tjant
Open Access
Journal Browser
Go
Turkish Journal of Analysis and Number Theory. 2018, 6(5), 129-131
DOI: 10.12691/tjant-6-5-1
Open AccessArticle

Notes on a Double Inequality for Ratios of any Two Neighbouring Non-zero Bernoulli Numbers

Feng Qi1, 2,

1Institute of Mathematics, Henan Polytechnic University, Jiaozuo 454010, China

2College of Mathematics, Inner Mongolia University for Nationalities, Tongliao 028043, Inner Mongolia, China;School of Mathematical Sciences, Tianjin Polytechnic University, Tianjin 300387, China

Pub. Date: October 27, 2018

Cite this paper:
Feng Qi. Notes on a Double Inequality for Ratios of any Two Neighbouring Non-zero Bernoulli Numbers. Turkish Journal of Analysis and Number Theory. 2018; 6(5):129-131. doi: 10.12691/tjant-6-5-1

Abstract

In the paper, the author notes on a double inequality published in “Feng Qi, A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers, Journal of Computational and Applied Mathematics 351 (2019), 1-5; Available online at https://doi.org/10.1016/j.cam.2018.10.049.”

Keywords:
double inequality ratio Bernoulli number Riemann zeta function open problem guess

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 10th printing, Washington, 1972.
 
[2]  N. M. Temme, Special Functions: An Introduction to Classical Functions of Mathematical Physics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996.
 
[3]  H. W. Gould, Explicit formulas for Bernoulli numbers, Amer. Math. Monthly 79 (1972), no. 1, 44-51.
 
[4]  B.-N. Guo and F. Qi, A new explicit formula for the Bernoulli and Genocchi numbers in terms of the Stirling numbers, Glob. J. Math. Anal. 3 (2015), no. 1, 33-36.
 
[5]  B.-N. Guo and F. Qi, An explicit formula for Bernoulli numbers in terms of Stirling numbers of the second kind, J. Anal. Number Theory 3 (2015), no. 1, 27-30.
 
[6]  B.-N. Guo and F. Qi, Some identities and an explicit formula for Bernoulli and Stirling numbers, J. Comput. Appl. Math. 255 (2014), 568-579.
 
[7]  S.-L. Guo and F. Qi, Recursion formulae for Z. Anal. Anwendungen 18 (1999), no. 4, 1123-1130.
 
[8]  J. Higgins, Double series for the Bernoulli and Euler numbers, J. London Math. Soc. 2nd Ser. 2 (1970), 722-726.
 
[9]  S. Jeong, M.-S. Kim, and J.-W. Son, On explicit formulae for Bernoulli numbers and their counterparts in positive characteristic, J. Number Theory 113 (2005), no. 1, 53-68.
 
[10]  F. Qi, Derivatives of tangent function and tangent numbers, Appl. Math. Comput. 268 (2015), 844-858.
 
[11]  F. Qi and B.-N. Guo, Alternative proofs of a formula for Bernoulli numbers in terms of Stirling numbers, Analysis (Berlin) 34 (2014), no. 3, 311-317.
 
[12]  S. Shirai and K.-I. Sato, Some identities involving Bernoulli and Stirling numbers, J. Number Theory 90 (2001), no. 1, 130-142.
 
[13]  H.-F. Ge, New sharp bounds for the Bernoulli numbers and refinement of Becker-Stark inequalities, J. Appl. Math. 2012, Article ID 137507, 7 pages.
 
[14]  C. D’Aniello, On some inequalities for the Bernoulli numbers, Rend. Circ. Mat. Palermo (2) 43 (1994), no. 3, 329-332.
 
[15]  A. Laforgia, Inequalities for Bernoulli and Euler numbers, Boll. Un. Mat. Ital. A (5) 17 (1980), no. 1, 98-101.
 
[16]  D. J. Leeming, The real zeros of the Bernoulli polynomials, J. Approx. Theory 58 (1989), no. 2, 124-150.
 
[17]  H. Alzer, Sharp bounds for the Bernoulli numbers, Arch. Math. (Basel) 74 (2000), no. 3, 207-211.
 
[18]  Feng Qi, A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers, Journal of Computational and Applied Mathematics 351 (2019), 1-5.
 
[19]  Q.-M. Luo, B.-N. Guo, and F. Qi, On evaluation of Riemann zeta function ζ(s), Adv. Stud. Contemp. Math. (Kyungshang) 7 (2003), no. 2, 135-144.
 
[20]  Q.-M. Luo, Z.-L. Wei, and F. Qi, Lower and upper bounds of ζ(3), Adv. Stud. Contemp. Math. (Kyungshang) 6 (2003), no. 1, 47-51.
 
[21]  L. Yin and F. Qi, Several series identities involving the Catalan numbers, Trans. A. Razmadze Math. Inst. 172 (2018), no. 3, 466-474.
 
[22]  B.-N. Guo, I. Mezö, and F. Qi, An explicit formula for the Bernoulli polynomials in terms of the r-Stirling numbers of the second kind, Rocky Mountain J. Math. 46 (2016), no. 6, 1919-1923
 
[23]  H.-L. Lv, Z.-H. Yang, T.-Q. Luo, and S.-Z. Zheng, Sharp inequalities for tangent function with applications, J. Inequal. Appl. 2017, Paper No. 94, 17 pp.
 
[24]  F. Qi and R. J. Chapman, Two closed forms for the Bernoulli polynomials, J. Number Theory 159 (2016), 89-100.
 
[25]  Z.-H. Yang, Approximations for certain hyperbolic functions by partial sums of their Taylor series and completely monotonic functions related to gamma function, J. Math. Anal. Appl. 441 (2016), no. 2, 549-564.
 
[26]  L. Zhu, New bounds for the exponential function with cotangent, J. Inequal. Appl. (2018), 2018:106, 13 pages.
 
[27]  L. Zhu, On Frame’s inequalities, J. Inequal. Appl. (2018), 2018:94, 14 pages.
 
[28]  L. Zhu, Sharp generalized Papenfuss–Bach-type inequality, J. Nonlinear Sci. Appl. 11 (2018), no. 6, 770-777.
 
[29]  L. Zhu and M. Nenezi´c, New approximation inequalities for circu- lar functions, J. Inequal. Appl. (2018).
 
[30]  F. Qi, A double inequality for ratios of the Bernoulli numbers, ResearchGate Dataset.
 
[31]  F. Qi, A double inequality for ratios of Bernoulli numbers, ResearchGate Dataset.
 
[32]  F. Qi, A double inequality for ratios of Bernoulli numbers, RGMIA Res. Rep. Coll. 17 (2014), Article 103, 4 pages.
 
[33]  F. Qi, A double inequality for the ratio of two consecutive Bernoulli numbers, Preprints 2017, 2017080099, 7 pages.