[1] | M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 10th printing, Washington, 1972. |
|
[2] | N. M. Temme, Special Functions: An Introduction to Classical Functions of Mathematical Physics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996. |
|
[3] | H. W. Gould, Explicit formulas for Bernoulli numbers, Amer. Math. Monthly 79 (1972), no. 1, 44-51. |
|
[4] | B.-N. Guo and F. Qi, A new explicit formula for the Bernoulli and Genocchi numbers in terms of the Stirling numbers, Glob. J. Math. Anal. 3 (2015), no. 1, 33-36. |
|
[5] | B.-N. Guo and F. Qi, An explicit formula for Bernoulli numbers in terms of Stirling numbers of the second kind, J. Anal. Number Theory 3 (2015), no. 1, 27-30. |
|
[6] | B.-N. Guo and F. Qi, Some identities and an explicit formula for Bernoulli and Stirling numbers, J. Comput. Appl. Math. 255 (2014), 568-579. |
|
[7] | S.-L. Guo and F. Qi, Recursion formulae for Z. Anal. Anwendungen 18 (1999), no. 4, 1123-1130. |
|
[8] | J. Higgins, Double series for the Bernoulli and Euler numbers, J. London Math. Soc. 2nd Ser. 2 (1970), 722-726. |
|
[9] | S. Jeong, M.-S. Kim, and J.-W. Son, On explicit formulae for Bernoulli numbers and their counterparts in positive characteristic, J. Number Theory 113 (2005), no. 1, 53-68. |
|
[10] | F. Qi, Derivatives of tangent function and tangent numbers, Appl. Math. Comput. 268 (2015), 844-858. |
|
[11] | F. Qi and B.-N. Guo, Alternative proofs of a formula for Bernoulli numbers in terms of Stirling numbers, Analysis (Berlin) 34 (2014), no. 3, 311-317. |
|
[12] | S. Shirai and K.-I. Sato, Some identities involving Bernoulli and Stirling numbers, J. Number Theory 90 (2001), no. 1, 130-142. |
|
[13] | H.-F. Ge, New sharp bounds for the Bernoulli numbers and refinement of Becker-Stark inequalities, J. Appl. Math. 2012, Article ID 137507, 7 pages. |
|
[14] | C. D’Aniello, On some inequalities for the Bernoulli numbers, Rend. Circ. Mat. Palermo (2) 43 (1994), no. 3, 329-332. |
|
[15] | A. Laforgia, Inequalities for Bernoulli and Euler numbers, Boll. Un. Mat. Ital. A (5) 17 (1980), no. 1, 98-101. |
|
[16] | D. J. Leeming, The real zeros of the Bernoulli polynomials, J. Approx. Theory 58 (1989), no. 2, 124-150. |
|
[17] | H. Alzer, Sharp bounds for the Bernoulli numbers, Arch. Math. (Basel) 74 (2000), no. 3, 207-211. |
|
[18] | Feng Qi, A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers, Journal of Computational and Applied Mathematics 351 (2019), 1-5. |
|
[19] | Q.-M. Luo, B.-N. Guo, and F. Qi, On evaluation of Riemann zeta function ζ(s), Adv. Stud. Contemp. Math. (Kyungshang) 7 (2003), no. 2, 135-144. |
|
[20] | Q.-M. Luo, Z.-L. Wei, and F. Qi, Lower and upper bounds of ζ(3), Adv. Stud. Contemp. Math. (Kyungshang) 6 (2003), no. 1, 47-51. |
|
[21] | L. Yin and F. Qi, Several series identities involving the Catalan numbers, Trans. A. Razmadze Math. Inst. 172 (2018), no. 3, 466-474. |
|
[22] | B.-N. Guo, I. Mezö, and F. Qi, An explicit formula for the Bernoulli polynomials in terms of the r-Stirling numbers of the second kind, Rocky Mountain J. Math. 46 (2016), no. 6, 1919-1923 |
|
[23] | H.-L. Lv, Z.-H. Yang, T.-Q. Luo, and S.-Z. Zheng, Sharp inequalities for tangent function with applications, J. Inequal. Appl. 2017, Paper No. 94, 17 pp. |
|
[24] | F. Qi and R. J. Chapman, Two closed forms for the Bernoulli polynomials, J. Number Theory 159 (2016), 89-100. |
|
[25] | Z.-H. Yang, Approximations for certain hyperbolic functions by partial sums of their Taylor series and completely monotonic functions related to gamma function, J. Math. Anal. Appl. 441 (2016), no. 2, 549-564. |
|
[26] | L. Zhu, New bounds for the exponential function with cotangent, J. Inequal. Appl. (2018), 2018:106, 13 pages. |
|
[27] | L. Zhu, On Frame’s inequalities, J. Inequal. Appl. (2018), 2018:94, 14 pages. |
|
[28] | L. Zhu, Sharp generalized Papenfuss–Bach-type inequality, J. Nonlinear Sci. Appl. 11 (2018), no. 6, 770-777. |
|
[29] | L. Zhu and M. Nenezi´c, New approximation inequalities for circu- lar functions, J. Inequal. Appl. (2018). |
|
[30] | F. Qi, A double inequality for ratios of the Bernoulli numbers, ResearchGate Dataset. |
|
[31] | F. Qi, A double inequality for ratios of Bernoulli numbers, ResearchGate Dataset. |
|
[32] | F. Qi, A double inequality for ratios of Bernoulli numbers, RGMIA Res. Rep. Coll. 17 (2014), Article 103, 4 pages. |
|
[33] | F. Qi, A double inequality for the ratio of two consecutive Bernoulli numbers, Preprints 2017, 2017080099, 7 pages. |
|