Turkish Journal of Analysis and Number Theory
ISSN (Print): 2333-1100 ISSN (Online): 2333-1232 Website: http://www.sciepub.com/journal/tjant
Open Access
Journal Browser
Go
Turkish Journal of Analysis and Number Theory. 2018, 6(3), 84-89
DOI: 10.12691/tjant-6-3-3
Open AccessResearch Article

On Multiple Zeta Function and Associated Properties

Maged G. Bin-Saad1, , M. A. Pathan2 and Ali Z. Bin-Alhag1

1Department of Mathematics, Aden University, Aden, Kohrmaksar, P. O. Box 6014, Yemen

2Centre for Mathematical and statistical Sciences (CMSS), KFRI, Peechi P.O., Thrissur, Kerala-680653, India

Pub. Date: June 30, 2018

Cite this paper:
Maged G. Bin-Saad, M. A. Pathan and Ali Z. Bin-Alhag. On Multiple Zeta Function and Associated Properties. Turkish Journal of Analysis and Number Theory. 2018; 6(3):84-89. doi: 10.12691/tjant-6-3-3

Abstract

The purpose of this paper is to introduce and investigate a new class of multiple zeta functions of variables. We study its properties, integral representations, differential relation, series expansion and discuss the link with known results.

Keywords:
multi-variable zeta functions Hurwitz-Lerch Zeta function Hyper-geometric function Lauricella functions Summation formula expansion formulas

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Chaudhry M. A. and Zubair S. M., On a Class of Incomplete Gamma Functions with Applications, Chapman and Hall, (CRC Press Company), Boca Raton, London, New York and Washington, D. C., 2001.
 
[2]  Erdélyi,A., Magnus,W., Oberhettinger, F. and Tricomi, F.G., Higher Transcendental Functions, Vol.I , McGraw – Hill book inc. New York, Toronto and London, 1953.
 
[3]  Jankov, D., Pogány T. K. and Saxena, R. K. An extended general Hurwitz-Lerch Zeta function as a Mathieu (a,λ)-series, Appl. Math. Lett., 24, 1473-1476,2011.
 
[4]  Bin-Saad Maged G. , "Sums and partial sums of double power series associated with the generalized zeta function and their N-fractional calculus", Math. J. Okayama University, 49, 37-52, 2007.
 
[5]  Bin-Saad Maged G.,"Hypergeometric Series Associated with the Hurwitz-Lerch Zeta Function", Acta Math. Univ. Comenianae, 2, 269-286, 2009.
 
[6]  Bin-Saad Maged G. and Al Gonah, A.A., On hypergeometric type generating functions associated with generalized zeta function, Acta Math. Univ. Comenianae, 2, 253-266, 2006
 
[7]  Bin-Saad Maged G., Pathan M. A. and Hanballa Amani M.,On power series associated with generalized multiple zeta function, Math. Sci. Res. J. 17(10) 279-291, 2013.
 
[8]  Choi J., Multiple gamma function and their applications, in Proc. Internat. Conf. on Analysis (editied by Y.C. Kim), Yeungnam Univeristy, Korea, 73-84,1996.
 
[9]  Choi J., Jang D. S. and Srivastava H. M., A generalization of the Hurwitz-Lerch Zeta function, Integral Transforms Spec. Funct. 19, 65-79, 2008.
 
[10]  Goyal, S. and Laddha, R.K. , On the Generalized Riemann Zeta Funcion and the Generalized Lambert Transform, Ganita Sandesh, 11, 99-108, 1997.
 
[11]  Lin S. D. and Srivastava H. M., Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations, Appl. Math. Comput. 154, 725-733, 2004.
 
[12]  Srivastava, H. M., M. J. Luo and. Raina, R. K, New results involving a class of generalized Hurwitz-Lerch Zeta functions and their applications, Turkish J. Anal. Number Theory 1(1), 26-35, 2013.
 
[13]  Srivastava, H. M., R. K. Saxena, T. K. Pogány and R. Saxena, Integral and computational representations of the extended Hurwitz-Lerch Zeta function, Integral Transforms Spec. Funct. 22(7) , 487-506, 2011.
 
[14]  Srivastava, H. M., D. Jankov, Pogány, D., T. K. and R. K. Saxena, Two-sided inequalities for the extended Hurwitz-Lerch Zeta function, Comput. Math. Appl. 62 (2011), 516-522
 
[15]  Kamano K., The multiple Hurwitz Zeta function and a generalization of Lerch’s formula, Tokyo J. Math. 29, 61-73, 2006.
 
[16]  Matsumoto, K., The analytic continuation and the asymptonic behaviour of certain multiple zeta-functions I, J. Number Theory 101, 223-243,2003.
 
[17]  Srivastava, H. M. and Karlsson, P. W., Multiple Gaussian Hypergeometric Series, Halsted Press, Brisbane, London, New York, 1985.
 
[18]  Srivastava, H. M. and Manoch, H. L., A treatise on Generating Functions, Halsted Press, Brisbane, London, New York, 1984.
 
[19]  Whittaker, E. T. and Watson, G. N., A course of modern Analysis, Fourth Edition, Cambridge Uni. Press, 1952.
 
[20]  Srivastava H. M. and Choi J., Zeta and q-Zeta Functions and Associate Series and Integrals, Elsevier Science, Publishers, Amsterdam, London and New York, 2012.
 
[21]  Andrews, L.C., Special Functions for Engineers and Applied Mathematician, Mac-Millan, New York, 1985.
 
[22]  Miller, K.S. and Rose, B., An introduction to The Fractional Calculus and Fractional Differential Equations, New York, 1993.
 
[23]  Lauricella, G., Sulle funzioni ipergeometriche a piu variabili. Rend. Circ. Mat. Palermo 7, 111-158, 1893.