Turkish Journal of Analysis and Number Theory
ISSN (Print): 2333-1100 ISSN (Online): 2333-1232 Website: http://www.sciepub.com/journal/tjant
Open Access
Journal Browser
Turkish Journal of Analysis and Number Theory. 2018, 6(1), 1-8
DOI: 10.12691/tjant-6-1-1
Open AccessArticle

A Study on the Fundamental Unit of Certain Real Quadratic Number Fields

Özen ÖZER1,

1Department of Mathematics, Faculty of Science and Arts, Kırklareli Üniversity, Kırklareli

Pub. Date: February 27, 2018

Cite this paper:
Özen ÖZER. A Study on the Fundamental Unit of Certain Real Quadratic Number Fields. Turkish Journal of Analysis and Number Theory. 2018; 6(1):1-8. doi: 10.12691/tjant-6-1-1


In this paper, we consider the certain types of real quadratic fields where is a square free positive integer. We obtain new parametric representation of the fundamental unit for such types of fields. Also, we get a fix on Yokoi’s invariants as well as class numbers and support all results with tables.

quadratic fields continued fraction expansions class numbers fundamental units Yokoi’s invariants

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/


[1]  Benamar H., Chandoul A. and Mkaouar M. (2015). On the Continued Fraction Expansion of Fixed Period in Finite Fields, Canad. Math. Bull. 58, 704-712.
[2]  Clemens L. E., Merill K. D., Roeder D. W. (1995). Continues fractions and series, J. Number Theory 54, 309-317.
[3]  Elezovi´c N.(1997). A note on continued fractions of quadratic irrationals, Math. Commun. 2, 27-33.
[4]  Halter-Koch F.,(1991). Continued fractions of given symmetric period. Fibonacci Quart., 29(4), 298-303.
[5]  Kawamoto F. and Tomita K. (2008). Continued fraction and certain real quadratic fields of minimal type, J.Math.Soc. Japan, 60, 865-903.
[6]  Louboutin S. (1988). Continued Fraction and Real Quadratic Fields, J.Number Theory, 30, 167-176, 1988.
[7]  Mollin R. A. (1996). Quadratics, CRC Press, Boca Rato, FL, 399p.
[8]  Mollin R. A., Williams, H.C. (1992). On Real Quadratic Fields of Class Number Two, Math. of Comp. 59(200), 625-632.
[9]  Olds C. D. (1963). Continued Functions, New York, Random House, 170 p.
[10]  Özer Ö. (2016). On Real Quadratic Number Fields Related With Specific Type of Continued Fractions, Journal of Analysis and Number Theory, 4(2), 85-90.
[11]  Özer Ö. (2016). Notes On Especial Continued Fraction Expansions and Real Quadratic Number Fields, Kirklareli University Journal of Engineering and Science, 2(1), 74-89.
[12]  Perron O. (1950). Die Lehre von den Kettenbrichen, New York: Chelsea, Reprint from Teubner Leipzig, 200 p.
[13]  Sasaki R. (1986). A characterization of certain real quadratic fields, Proc. Japan Acad., 62, Ser. A, No. 3, 97-100.
[14]  Sierpinski W. (1964). Elementary Theory of Numbers, Warsaw: Monografi Matematyczne.
[15]  Tomita, K., 1995. Explicit representation of fundamental units of some quadratic fields, Proceeding Japan Academia, 71, Ser. A, No. 2, 41-43.
[16]  Tomita, K. and Yamamuro K., 2002. Lower bounds for fundamental units of real quadratic fields, Nagoya Mathematical Journal,166, 29-37.
[17]  Williams, K. S., and Buck, N., 1994. Comparison of the lengths of the continued fractions of and Proceeding American Mathematical Society, 120(4), 995-1002, 1994.
[18]  Yokoi H. (1990). The fundamental unit and class number one problem of real quadratic fields with prime discriminant, Nagoya Math. J., 120, 51-59.
[19]  Yokoi H. (1991). The fundamental unit and bounds for class numbers of real quadratic fields, Nagoya Math. J., 124, 181-197.
[20]  Yokoi H., 1993. A note on class number one problem for real quadratic fields. Proc. Japan Acad., 69, Ser. A, 22-26.
[21]  Yokoi H, 1993. New invariants and class number problem in real quadratic fields. Nagoya Math. J., 132, 175-197.
[22]  Zhang, Z. and Yue, Q., 2014. Fundamental units of real quadratic fields of odd class number. Journal of Number Theory 137, 122-129.