Turkish Journal of Analysis and Number Theory
ISSN (Print): 2333-1100 ISSN (Online): 2333-1232 Website: http://www.sciepub.com/journal/tjant
Open Access
Journal Browser
Go
Turkish Journal of Analysis and Number Theory. 2017, 5(6), 202-209
DOI: 10.12691/tjant-5-6-2
Open AccessArticle

Symmetric Division Deg Energy of a Graph

K. N. Prakasha1, P. Siva Kota Reddy2 and Ismail Naci Cangul3,

1Mathematics, Vidyavardhaka College of Engineering, Mysuru, India

2Mathematics, Siddaganga Institute of Technology, Tumkur, India

3Mathematics, Uludag University, Bursa, Turkey

Pub. Date: September 21, 2017

Cite this paper:
K. N. Prakasha, P. Siva Kota Reddy and Ismail Naci Cangul. Symmetric Division Deg Energy of a Graph. Turkish Journal of Analysis and Number Theory. 2017; 5(6):202-209. doi: 10.12691/tjant-5-6-2

Abstract

The purpose of this paper is to introduce and investigate the symmetric division deg energy SDDE(G) of a graph. We establish upper and lower bounds for SDDE(G). Also the symmetric division deg energy for certain graphs with one edge deleted are calculated.

Keywords:
symmetric division deg index symmetric division deg eigenvalues symmetric division deg energy k-complement k(i)-complement edge deletion

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Alexander, V., Upper and lower bounds of symmetric division deg index, Iranian Journal of Mathematical Chemistry, 5 (2) (2014), 91-98.
 
[2]  Gutman, I., The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz, 103 (1978), 1-22.
 
[3]  Gutman, I., The energy of a graph: old and new results, Combinatorics and applications, A. Betten, A. Khoner, R. Laue and A. Wassermann, (Eds.), Springer, Berlin, (2001), 196-211.
 
[4]  Randić, M., On characterization of molecular branching, J. Am. Chem. Soc., 97 (1975), 6609-6615.
 
[5]  Sampathkumar, E., Pushpalatha, L., Venkatachalam, C. V. and Bhat, P., Generalized complements of a graph, Indian J. Pure Appl. Math., 29(6) (1998), 625-639.
 
[6]  Todeschini, R., Consonni, V., Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, (2000), 84-90.
 
[7]  Todeschini, R., Consonni, V., Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, (2009), 161-172.
 
[8]  Zhou, B., Trinajstic, N., On Sum-Connectivity Matrix and Sum-Connectivity Energy of (Molecular) Graphs, Acta Chim. Slov, 57 (2010), 518-523.
 
[9]  Zhou, B., Trinajstic, N., On a novel connectivity index, J. Math. Chem., 46 (2009), 1252-1270.