[1] | Ö. Acar, G. Durmaz and G. Minak, Generalized multivalued F-contractions on complete metric spaces, Bulletin of the Iranian Mathematical Society. 40(2014), 1469-1478. |
|
[2] | Ö. Acar and I. Altun, A Fixed Point Theorem for Multivalued Mappings with δ-Distance, Abstr. Appl. Anal., Volume 2014, Article ID 497092, 5 pages. |
|
[3] | A. Augustynowicz, Existence and uniqueness of solutions for partial differential-functional equations of the first order with deviating argument of the derivative of unknown function, Serdica Mathematical Journal 23 (1997) 203-210. |
|
[4] | M. Arshad, Fahimuddin, A. Shoaib and A. Hussain, Fixed point results for α-ψ- -locally graphic contraction in dislocated qusai metric spaces, Math Sci., (2014), 7 pages. |
|
[5] | S.Banach, Sur les opérations dans les ensembles abstraits et leur application aux equations itegrales, Fund. Math., 3 (1922) 133-181. |
|
[6] | R. Baskaran, P.V. Subrahmanyam, A note on the solution of a class of functional equations. Appl. Anal. 22(3-4), 235-241. |
|
[7] | R. Bellman, Methods of Nonlinear Analysis. Vol. II. Mathematics in Science and Engineering, vol. 61. Academic Press, New York (1973). |
|
[8] | R. Bellman, E.S. Lee, Functional equations in dynamic programming. Aequ. Math. 17, 1-18 (1978). |
|
[9] | P.C. Bhakta, S. Mitra, Some existence theorems for functional equations arising in dynamic programming. J. Math. Anal. Appl. 98, 348-362 (1984). |
|
[10] | LB. Ćirić, A generalization of Banach.s contraction principle. Proc. Am. Math. Soc., 45, (1974) 267-273. |
|
[11] | M. Cosentino, P. Vetro, Fixed point results for F-contractive mappings of Hardy-Rogers-Type, Filomat 28:4(2014), 715-722. |
|
[12] | M. Edelstein, On fixed and periodic points under contractive mappings. J. Lond. Math. Soc., 37, 74-79 (1962). |
|
[13] | B. Fisher, Set-valued mappings on metric spaces, Fundamenta Mathematicae, 112 (2) (1981) 141-145. |
|
[14] | N. Hussain and P. Salimi, suzuki-wardowski type fixed point theorems for α-GF-contractions, Taiwanese J. Math., 20 (20) (2014). |
|
[15] | N. Hussain, P Salimi and A. Latif, Fixed point results for single and set-valued α-η-ψ-contractive mappings, Fixed Point Theory Appl. 2013, 2013: 212. |
|
[16] | D. Klim and D.Wardowski, Fixed points of dynamic processes of set-valued F-contractions and application to functional equations, Fixed Point Theory Appl., (2015) 2015: 22. |
|
[17] | E. Karapinar and B. Samet, Generalized (α-ψ) contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal., (2012) Article id: 793486. |
|
[18] | MA. Kutbi, W. Sintunavarat, On new fixed point results for (α,ψ,ξ)-contractive multi-valued mappings on α-complete metric spaces their consequences, Fixed Point Theory Appl., (2015) 2015: 2. |
|
[19] | MA. Kutbi, M. Arshad and A. Hussain, On Modified α-η-Contractive mappings, Abstr. Appl. Anal., Volume 2014, Article ID 657858, 7 pages. |
|
[20] | SB. Nadler, Multivalued contraction mappings, Pac. J. Math., 30 (1969), 475-488. |
|
[21] | D. ÓRegan, A. Petruşel, Fixed point theorems for generalized contractions in ordered metric spaces, Journal of Mathematical Analysis and Applications 341 (2008) 1241-1252. |
|
[22] | H. Piri and P. Kumam, Some fixed point theorems concerning F- contraction in complete metric spaces, Fixed Poin Theory Appl. 2014, 2014: 210. |
|
[23] | H.K. Pathak, Y.J. Cho, S.M. Kang, B.S. Lee, Fixed point theorems for compatible mappings of type P and applications to dynamic programming. Matematiche 50, 15-33 (1995). |
|
[24] | M. Sgroi and C. Vetro, Multi-valued F-contractions and the solution of certain functional and integral equations, Filomat 27:7 (2013), 1259-1268. |
|
[25] | P. Salimi, A. Latif and N. Hussain, Modified (α-ψ)-Contractive mappings with applications, Fixed Point Theory Appl. (2013) 2013: 151. |
|
[26] | M. Sgroi, C. Vetro, Multi-valued F-contractions and the solution of certain functional and integral equations, Filomat 27: 7(2013), 1259-1268. |
|
[27] | B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal. 75 (2012) 2154-2165. |
|
[28] | NA. Secelean, Iterated function systems consisting of F-contractions, Fixed Point Theory Appl. 2013, Article ID 277 (2013). |
|
[29] | D. Wardowski, Fixed point theory of a new type of contractive mappings in complete metric spaces. Fixed Poin Theory Appl. 2012, Article ID 94 (2012). |
|