Turkish Journal of Analysis and Number Theory
ISSN (Print): 2333-1100 ISSN (Online): 2333-1232 Website: http://www.sciepub.com/journal/tjant
Open Access
Journal Browser
Turkish Journal of Analysis and Number Theory. 2017, 5(1), 13-17
DOI: 10.12691/tjant-5-1-3
Open AccessArticle

A New Padé Approximant for the Appell Hypergeometric Function F1

Abdallah Hammam1,

1Département de Mathématiques et Informatique, Faculté des sciences, Université Moulay Ismaïl, 50020 Meknès, Morocco

Pub. Date: December 26, 2016

Cite this paper:
Abdallah Hammam. A New Padé Approximant for the Appell Hypergeometric Function F1. Turkish Journal of Analysis and Number Theory. 2017; 5(1):13-17. doi: 10.12691/tjant-5-1-3


In this work, we present a simple method for computing the first Appell function F1(a,b,b’;c;x,y), in some particular case. We use a new definition of the general multivariate Padé approximant which allows us to get the explicit expression of the denominator polynomial. Our approach seems to give a better precision than the Taylor’s expansion, especially near the border of the convergence area.

hypergeometric functions multivariate approximation.

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/


Figure of 4


[1]  G. A. Jr. Baker, P. Graves-Morris, Padé Approximants, Second Ed.,Cambridge University Press, Cambridge, 1996.
[2]  B. Kniehl, O. V. Tarasov, Finding new relationships between hypergeometric functions by evaluating Feynman Integrals,Nucl. Phys. B 854 [PM] (2012) 841.
[3]  A. P. Golub, L. O. Chernestka, Two Dimensional Generalized Moment representations and Padé Approximant for some Humbert series. Ukr. Math. ZH. - 2013.-V. 65, N◦ 10.-P. 1315-1331.
[4]  A. Cuyt, How well can the concept of Padé approximant be generalized to the multivariate case? J. Comp. Math, 105 (1999), 25-50, MR1690577, (2000e:41029).
[5]  P. Zhou, A. Cuyt, and J. Tan. General Order Multiple Padé Approximant for Pseudomultavariate Functions. Math. Comp., 78(268):2137-2155, 2009.
[6]  A. Cuyt, K. Driver, J. Tan and B. Verdonk, Exploring multivariate Padé approximant for multiple hypergeometric series. Adv. Comput. Math., 10:29-49, 1999.
[7]  P. B. Borwein, A. Cuyt, P. Zhou, Explicit Construction of General Multivariate Padé Approximant to an Appell function. Adv. Comput. Math. 2005. V. 22, N◦ 3.- P. 249-273.
[8]  H. M. Srivastava, P. W. Karlsson, Multiple Gaussian Hypergeometric Series in Mathematics and Its Applications, Ellis Horwood, Halsted Press, New York, 1985.
[9]  M. J. Schlosser, Multiple Hypergeometric Series- Appell Series and beyond. arXiv: 1305.1966v1 [Math. CA]
[10]  P. Appell, Sur les fonctions hypergéométriques de plusieurs variables, In Mémoir. Sci. Math. Paris: Gautier Villars, 1925.
[11]  P. Appell; J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques: Polynômes d’Hermite, Paris: Gautier Villars, 1926.
[12]  Erdélyi A., Magnus W., Oberhettinger F. and Tricomi F. G., Higher Transcendental Functions, New York : Krieger, Vol. 1, pp. 222-224, 1981.