[1] | P. Aiena, Fredholm and local spectral theory with applications to multipliers, Kluwer, 2004. |
|
[2] | I. J. An, Y. M. Han, Weyls theorem for algebraically quasi-class A Operators. Integral Equation Operator Theory 62(2008): 1-10. |
|
[3] | S. K. Berberian, An extension of Weyl’s theorem to a class of not necessarily normal operators. Michigan Math. J. 16(1969): 273-279. |
|
[4] | S.K. Berberian, The Weyl spectrum of an operator. Indiana Univ. Math. J. 20(1970): 529-544. |
|
[5] | M. Berkani, On a class of Quasi-Fredholm operators. Integral Equation Operator Theory 34 (1999): 244-249. |
|
[6] | M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem. Proc. Amer. Math. Soc. 130(2002): 1717-1723. |
|
[7] | M. Berkani, B-Weyl spectrum and poles of the resolvent. J. Math. Anal. Appl. 272(2002): 596-603. |
|
[8] | M. Berkani, On the equivalence of Weyl theorem and generalized Weyl theorem. Acta Math. Sinica 272 (1)(2007): 103-110. |
|
[9] | M. Berkani, A. Arroud, Generalized weyl’s theorem and hyponormal operators. J. Austral. Math. Soc. 76(2004): 1-12. |
|
[10] | M. Berkani, J. Koliha, Weyl type theorems for bounded linear operators. Acta Sci. Math. (Szeged) 69 (1-2)(2003): 359-376. |
|
[11] | M. Berkani, M. Sarih, An atkinson-type theorem for B-Fredholm operators, Studia Math. 148(2001) 251-257. |
|
[12] | L. A. Coburn, Weyl’s theorem for nonnormal operators, Michigan Math. J. 13(1966) 285-288. |
|
[13] | R. E. Curto, Y. M. Han, Weyl’s theorem, a-Weyl’s theorem, and local spectral theory, J. Londan Math. Soc.(2) 67(2003): 499-509. |
|
[14] | B. P. Duggal, S. V. Djordjevic, Generalized Weyl’s theorem for a class of operators satisfying a norm condition II, Math. Proc. Royal Irish Acad. 104A(2006) 1-9. |
|
[15] | B. P. Duggal, I. H. Jeon, I. H. Kim, On Weyl’s theorem for quasi-class A operators, J. Korean Math. Soc. 43(4)(2006) 899-909. |
|
[16] | J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58(1975) 61-69. |
|
[17] | T. Furuta, M. Ito and Yamazaki T., A subclass of paranormal operators including class of log-hyponormal and several related classes, Sci. math. 1 (1998) 389-403. |
|
[18] | I. H. Jeon, I. Kim, On operators satisfying T*|T2|T≥*|T2|T*. Linear Algebra Appl. 418(2006): 854-862. |
|
[19] | J. J. Koliha, Isolated spectral points, Proc. Amer. Math. Soc. 124(1996) 3417-3424. |
|
[20] | M. Lahrouz, M. Zohry, Weyl type theorems and the approximate point spectrum, Irish Math. Soc. Bulletin 55(2005)41-51. |
|
[21] | K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152(1992) 323-336. |
|
[22] | V. Rakocević, On a class of operators, Mat. Vesnik. 37 (1985) 423-426. |
|
[23] | V. Rakocević, Operators obeying a-Weyl’s theorem, Rev. Roumaine Math. Pures Appl. 10(1986) 915-919. |
|
[24] | V. Rakocevic, Operators Obeying a-Weyl’s theorem, Publ. Math. Debrecen 55(3-4)(1999) 283-298. |
|
[25] | M.H.M. Rashid, M.S.M. Noorani and A.S. Saari, Weyl’s type theorems for quasi-Class A operators, J. Math. Stat. 4 (2)(2008) 70-74. |
|
[26] | M.H.M. Rashid, M.S.M. Noorani and A.S. Saari, Generalized Weyl’s theorem for log-hyponormal, Malaysian J. Math. Soc. 2 (1)(2008): 73-82. |
|
[27] | H. Weyl, Uber beschrankte quadratische Formen, deren Differenze vollsteting ist, Rend. Circ. Math. Palermo 27(1909): 373-392. |
|
[28] | J. Yuan and Z. Gao, Spectrum of Class wF(p,r,q) Operators, J. Ineq. Appl. Article ID 27195, 10 pages, 2007. |
|
[29] | H. Zguitti, A note on generlized Weyl’s theorem, J. Math. Anal. Appl. 316(2006) 373-381. |
|