Turkish Journal of Analysis and Number Theory
ISSN (Print): 2333-1100 ISSN (Online): 2333-1232 Website: http://www.sciepub.com/journal/tjant
Open Access
Journal Browser
Go
Turkish Journal of Analysis and Number Theory. 2016, 4(4), 113-117
DOI: 10.12691/tjant-4-4-5
Open AccessArticle

Generalization of Horadam’s Sequence

C.N. Phadte1, and Y.S. Valaulikar2

1Department of Mathematics, G.V.M’s College of Commerce & Economics, Ponda, Goa 403401, India

2Department of Mathematics, Goa University Taleigao Plateau, 403206, Goa, India

Pub. Date: September 02, 2016

Cite this paper:
C.N. Phadte and Y.S. Valaulikar. Generalization of Horadam’s Sequence. Turkish Journal of Analysis and Number Theory. 2016; 4(4):113-117. doi: 10.12691/tjant-4-4-5

Abstract

In this paper a new class of Fibonacci like sequence is introduced. Here we consider non-homogeneous recurrence relation to obtain generalization of Horadam’s Sequence. Some identities concerning this new sequence are obtained and proved. Some examples are given in support of the results.

Keywords:
pseudo fibonacci numbers non-homogeneous recurrence relation

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  A. F. Horadam, “A Generalized Sequence of Numbers”, The American Mathematical Monthly, 68 No. 5,(1961), pp.455-459.
 
[2]  A. F. Horadam, “Basic Properties of a certain Generalized Sequence of Numbers”, The Fibonacci Quarterly, 3, No.3(1965), pp.161-176.
 
[3]  A. F. Horadam, “Generating functions for power of a certain Generalized Sequence of numbers”, Duke Math J. 32, No.3(1965), pp. 437-446.
 
[4]  A. F. Horadam, “Special Properties of the Sequence Wn(a,b;p,q)” , The Fibonacci Quarterly, 5, No. 5 (1967), pp. 424-434.
 
[5]  C. N. Phadte, S.P. Pethe, “Generalization of the Fibonacci Sequence”, Applications of Fibonacci Numbers,5, Kluwer Academic Pub. 1993, 465-472.
 
[6]  C. N. Phadte, S. P. Pethe, “On Second Order Non-Homogeneous Recurrence Relation”, Annales Mathematicae et Informaticae vol.41 (2013) pp.205-210.
 
[7]  C. N. Phadte, “Trigonometric Pseudo Fibonacci Sequence”, Notes on Number Theory and Discrete Mathematics,21 No.3, (2015) pp.70-76.
 
[8]  J. E. Walton, A. F. Horadam, “Some Aspect of Fibonacci Numbers”, The Fibonacci Quarterly, 12.