Turkish Journal of Analysis and Number Theory
ISSN (Print): 2333-1100 ISSN (Online): 2333-1232 Website: http://www.sciepub.com/journal/tjant
Open Access
Journal Browser
Go
Turkish Journal of Analysis and Number Theory. 2016, 4(4), 109-112
DOI: 10.12691/tjant-4-4-4
Open AccessArticle

A Nonlinear Extension of Fibonacci Sequence

M. Tamba1, and Y.S. Valaulikar1

1Department of Mathematics, Goa University, Taleigaon Plateau, Goa, India

Pub. Date: September 02, 2016

Cite this paper:
M. Tamba and Y.S. Valaulikar. A Nonlinear Extension of Fibonacci Sequence. Turkish Journal of Analysis and Number Theory. 2016; 4(4):109-112. doi: 10.12691/tjant-4-4-4

Abstract

A new extension of Fibonacci sequence which yields a nonlinear second order recurrence relation is defined. Some identities and congruence properties for the new sequence are obtained.

Keywords:
fibonacci sequence nonlinear recurrence relation congruence properties

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Z.Akyuz, S. Halici, On Some Combinatorial Identities involving the terms of generalized Fibonacci and Lucas sequences, Hacettepe Journal of Mathematics and Statistics, Volume 42 (4) (2013), 431-435.
 
[2]  A.T. Benjmin, J.J. Quinn, Proofs that really count: The Art of Combinatorial Proof, Mathematical Association of America, Washington, D.C., 2003.
 
[3]  A.T. Benjmin, J.J. Quinn, The Fibonacci Numbers Exposed More Discretely, Mathematics Magazine 76:3 (2003), 182-192.
 
[4]  D. Burton, Elementary Number Theory, 6th edition, Tata McGraw-Hill, 2006.
 
[5]  M. Edson, O. Yayenie, A new generalization of Fibonacci sequence and extended Binet's formula, Integers, Volume 9, Issue 6, Pages 639-654, ISSN (Print) 1867-0652.
 
[6]  J. Kappraff, G.W. Adamson, Generalized Binet Formulas, Lucas polynomials and Cyclic constants, Forma,19,(2004) 355-366.
 
[7]  M. Renault, The Fibonacci sequence under various moduli, Masters Thesis, 1996.
 
[8]  S. Vajda, Fibonacci and Lucas numbers and the Golden section: Theory and Applications, Dover Publications, 2008.