[1] | S. C. Arora and J. K. Thukral, “On a class of operators,” Glasnik Matematicki, 21(41), (1986), 381-386. |
|
[2] | D. Senthilkumar, P. Maheswari Naik and D. Kiruthika,“Quasi class Q* composition operators,” International Journal of Math. Sci. and Engg. Appls. (IJMSEA), ISSN 0973-9424, Vol. 5, No IV, July, 2011, pp. 1-9. |
|
[3] | B. P. Duggal, C. S. Kubrusly, and N. Levan, “Contractions of class Q and invariant subspaces,” Bull. Korean Math. Soc. 42(2005), No. 1, pp. 169-177. |
|
[4] | T. Furuta,“On the class of paranormal operators,” Proc. Jap. Acad. 43(1967), 594-598. |
|
[5] | J. K. Han, H. Y. Lee, and W. Y. Lee, “Invertible completions of 2 2 upper triangular operator matrices,” Proceedings of the American Mathematical Society, vol. 128(2000), 119-123. |
|
[6] | Ilmi Hoxha and Naim L. Braha, “A note on k- quasi -*- paranormal operators,” Journal of Inequalities and Applications 2013, 2013:350. |
|
[7] | Salah Mecheri, “Bishops property β and Riesz idempotent for k-quasi-paranormal operators,” Banach J. Math. Anal., 6(2012), No. 1, 147-154. |
|
[8] | Salah Mecheri, “On quasi *- paranormal operators,” Banach J. Math. Anal., 3(2012), No.1, 86-91. |
|
[9] | S. M. Patel, “Contributions to the study of spectraloid operators,” Ph. D. Thesis, Delhi University, 1974. |
|
[10] | D. Senthilkumar and T. Prasad, “Composition operators of class Q*,” Int. Journal of Math. Analysis, Vol. 4, 2010, no. 21, 1035-1040. |
|
[11] | T. Veluchamy and A. Devika, “Some properties of quasi -*- paranormal operators,” Journal of Modern Mathematics and Statistics, 1 (1-4), 35-38, 2007. |
|
[12] | S. Mecheri, “Isolated points of spectrum of k- quasi -*- class A operators,” Studia Mathematica, 208(2012), 87-96. |
|
[13] | J. L. Shen, F. Zuo and C. S. Yang, “On operators satisfying ,” Acta Mathematica Sinica, English Series, Nov., Vol. 26(2010), no.11, pp. 2109-2116. |
|