Turkish Journal of Analysis and Number Theory
ISSN (Print): 2333-1100 ISSN (Online): 2333-1232 Website: http://www.sciepub.com/journal/tjant
Open Access
Journal Browser
Go
Turkish Journal of Analysis and Number Theory. 2015, 3(4), 94-96
DOI: 10.12691/tjant-3-4-1
Open AccessArticle

Some Curvature Properties on a Special Paracontact Kenmotsu Manifold with Respect to Semi-Symmetric Connection

K. L. Sai Prasad1, and T. Satyanarayana2

1Department of Mathematics, Gayatri Vidya Parishad College of Engineering for Women, Visakhapatnam, Andhra Pradesh, India

2Department of Mathematics, Pragathi Engineering College, Surampalem, Near Peddapuram, Andhra Pradesh, India

Pub. Date: October 15, 2015

Cite this paper:
K. L. Sai Prasad and T. Satyanarayana. Some Curvature Properties on a Special Paracontact Kenmotsu Manifold with Respect to Semi-Symmetric Connection. Turkish Journal of Analysis and Number Theory. 2015; 3(4):94-96. doi: 10.12691/tjant-3-4-1

Abstract

The object of the present paper is to study some properties of curvature tensor of a semi-symmetric non-metric connection in a type of special paracontact Kenmotsu (briefly SP-Kenmotsu) manifold. We have deduced the expressions for curvature tensor and the Ricci tensor of Mn with respect to semi-symmetric non-metric connection . It is proved that in an SP-Kenmotsu manifold if the curvature tensor of the semi-symmetric non-metric connection vanishes then the manifold is projectively flat.

Keywords:
curvature tensor ricci tensor projective curvature tensor non-metric connection sp-kenmotsu manifold

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Friedmann and Schouten, J. A., Uber die Geometrie der halbsymmetrischen Ubertragungen, Math Zeitschrift, 21, 211-223, 1924.
 
[2]  Schouten, J. A., Ricci-calculus, Springer-Verlag. Berlin, 1954.
 
[3]  Hayden, H. A., Subspaces of a space with torsion, Proc. London Math. Soc., 34, 27-50, 1932.
 
[4]  Yano, K., On semi-symmetric metric connection, Revue Roumanine de Mathematiques Pures et Appliques, 15, 1579-1581, 1970.
 
[5]  Prvanovi´c, M., On pseudo metric semi-symmetric connections, Pub. De L’Institut Math., N.S., 18(32), 157-164, 1975.
 
[6]  Andonie, P.O.C., On semi-symmetric non-metric connection on a Riemannian manifold. Ann. Fac. Sci. De Kinshasa, Zaire sect. Math. Phys., 2, 1976.
 
[7]  Andonie, P.O.C., Smaranda, D., Certains connections semi-symmetriques, Tensor (N.S.), 31, 8-12, 1977.
 
[8]  Agashe, N. S. and Chafle, M. R., A semi-symmetric non-metric connection on a Riemannian manifold, Ind. J. of Pure and Appl. Math., 23(6), 399-409, 1992.
 
[9]  Prasad, On a semi-symmetric non-metric connection in an sp-Sasakian manifold, Istambul Univ.Fen Fak. Mat. Der., 53, 77-80, 1994.
 
[10]  Sato, I., On a structure similar to the almost contact structure, Tensor (N.S.), 30, 219-224, 1976.
 
[11]  Adati, T. and Matsumoto, K., On conformally recurrent and conformally symmetric P-Sasakian manifolds, TRU Math., 13, 25-32, 1977.
 
[12]  Kenmotsu, K., A class of almost contact Riemannian manifolds, Tohoku Math. Journal, 24, 93-103, 1972.
 
[13]  Sinha, B. B. and Sai Prasad, K. L., A class of almost para contact metric Manifold, Bulletin of the Calcutta Mathematical Society, 87, 307-312, 1995.
 
[14]  Pokhariyal, G.P., Mishra, R.S., The curvature tensors and their relativistic significance, Yokohoma Math.J., 18, 105-108, 1970.
 
[15]  Yano, K. and Bochner, S., Curvature and Betti numbers, Annals of Math Studies 32, Princeton University Press, 1953.
 
[16]  Sinha, B. B., An introduction to modern Differential Geometry, Kalyani Publishers, New Delhi, 1982.