Turkish Journal of Analysis and Number Theory
ISSN (Print): 2333-1100 ISSN (Online): 2333-1232 Website: http://www.sciepub.com/journal/tjant
Open Access
Journal Browser
Go
Turkish Journal of Analysis and Number Theory. 2014, 2(6), 230-232
DOI: 10.12691/tjant-2-6-8
Open AccessArticle

On the Error Term for the Number of Integral Ideals in Galois Extensions

Sanying Shi1,

1School of Mathematics, Hefei University of Technology, Hefei, China

Pub. Date: December 18, 2014

Cite this paper:
Sanying Shi. On the Error Term for the Number of Integral Ideals in Galois Extensions. Turkish Journal of Analysis and Number Theory. 2014; 2(6):230-232. doi: 10.12691/tjant-2-6-8

Abstract

Suppose that E is an algebraic number field over the rational field Let a(n) be the number of integral ideals in E with norm n and Δ(x) denote the remainder term in the asymptotic formula of the l-th integral power sum of a(n). In this paper the bound of the average behavior of Δ(x) is given. This result constitutes an improvement upon that of Lü and Wang for the error terms in mean value.

Keywords:
dedekind zeta-function dirichlet series mean value

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Chandraseknaran K., Good A., On the number of integral ideals in Galois extensions, Monatsh. Math., 95. 99-109. 1983.
 
[2]  Heath-Brown D. R., The number of Abelian groups of order at most x, Journtes Arithmttiques, Luminy 1989.
 
[3]  Huxley M. N., Watt N., The number of ideals in a quadratic field II, Israel J. Math. Part A, 120, 125-153. 2000,
 
[4]  Ivic A., The number of finite non-isomorphic Abelian groups in mean square, Hardy-Ramanujan J., 9, 17-23. 1986.
 
[5]  Ivic A., On the Error Term for the Counting Functions of Finite Abelian Groups, Monatsh. Math. 114, 115-124. 1992.
 
[6]  Iwaniec H., Kowalski E., Analytic Number Theory, Amer. Math. Soc. Colloq. Publ., 53, 204-216. 2004.
 
[7]  Landau E., Einführung in die elementare and analytische Theorie der algebraischen Zahlen und der Ideale, Teubner, 1927.
 
[8]  Lü G., Wang Y., Note on the number of integral ideals in Galois extension, Sci. China Ser. A, 53, 2417-2424. 2010.
 
[9]  Müller W., On the distribution of ideals in cubic number fields, Monatsh. Math., 106, 211-219. 1988.
 
[10]  Nowak W.G., On the distribution of integral ideals in algebraic number theory fields, Math. Nachr., 161, 59-74. 1993.