Turkish Journal of Analysis and Number Theory
ISSN (Print): 2333-1100 ISSN (Online): 2333-1232 Website: http://www.sciepub.com/journal/tjant
Open Access
Journal Browser
Go
Turkish Journal of Analysis and Number Theory. 2014, 2(6), 226-229
DOI: 10.12691/tjant-2-6-7
Open AccessArticle

Generalized Inequalities Related to the Classical Euler’s Gamma Function

Kwara Nantomah1,

1Department of Mathematics, University for Development Studies, Navrongo Campus, Navrongo UE/R, Ghana

Pub. Date: December 14, 2014

Cite this paper:
Kwara Nantomah. Generalized Inequalities Related to the Classical Euler’s Gamma Function. Turkish Journal of Analysis and Number Theory. 2014; 2(6):226-229. doi: 10.12691/tjant-2-6-7

Abstract

This paper presents some inequalities concerning certain ratios of the classical Euler’s Gamma function. The results generalized some recent results.

Keywords:
Gamma function q-Gamma function k-Gamma function (pq)-Gamma function (qk)-Gamma function inequality

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  R. Diaz and E. Pariguan, On hypergeometric functions and Pachhammer k-symbol, Divulgaciones Matematicas 15(2)(2007), 179-192.
 
[2]  T. Mansour, Some inequalities for the q-Gamma Function, J. Ineq. Pure Appl. Math. 9(1)(2008), Art. 18.
 
[3]  F. Merovci, Power Product Inequalities for the Γk Function, Int. Journal of Math. Analysis, 4(21)(2010), 1007-1012.
 
[4]  V. Krasniqi and F. Merovci, Some Completely Monotonic Properties for the (p, q)-Gamma Function, Mathematica Balkanica, New Series 26(2012), 1-2.
 
[5]  R. Diaz and C. Teruel, q,k-generalized gamma and beta functions, J. Nonlin. Math. Phys. 12(2005), 118-134.
 
[6]  V. Krasniqi, T. Mansour and A. Sh. Shabani, Some Monotonicity Properties and Inequalities for Γ and ζ Functions, Mathematical Communications 15(2)(2010), 365-376.
 
[7]  K. Nantomah, On Certain Inequalities Concerning the Classical Euler's Gamma Function, Advances in Inequalities and Applications, Vol. 2014 (2014) Art ID 42.
 
[8]  K. Nantomah and M. M. Iddrisu, Some Inequalities Involving the Ratio of Gamma Functions, Int. Journal of Math. Analysis 8(12)(2014), 555-560.
 
[9]  K. Nantomah, M. M. Iddrisu and E. Prempeh, Generalization of Some Inequalities for theRatio of Gamma Functions, Int. Journal of Math. Analysis, 8(18)(2014), 895-900.
 
[10]  K. Nantomah and E. Prempeh, Generalizations of Some Inequalities for the p-Gamma, q-Gamma and k-Gamma Functions, Electron. J. Math. Anal. Appl. 3(1)(2015),158-163.
 
[11]  K. Nantomah and E. Prempeh, Some Sharp Inequalities for the Ratio of Gamma Functions, Math. Aeterna, 4(5)(2014), 501-507.
 
[12]  K. Nantomah and E. Prempeh, Generalizations of Some Sharp Inequalities for the Ratio of Gamma Functions, Math. Aeterna, 4(5)(2014), 539-544.