Turkish Journal of Analysis and Number Theory
ISSN (Print): 2333-1100 ISSN (Online): 2333-1232 Website: http://www.sciepub.com/journal/tjant
Open Access
Journal Browser
Go
Turkish Journal of Analysis and Number Theory. 2014, 2(4), 119-124
DOI: 10.12691/tjant-2-4-3
Open AccessArticle

Some Properties of k-Jacobsthal Numbers with Arithmetic Indexes

Deepika Jhala1, , G.P.S. Rathore2 and Kiran Sisodiya1

1School of Studies in Mathematics, Vikram University, Ujjain (India)

2College of Horticulture, Mandsaur (M.P.)

Pub. Date: July 23, 2014

Cite this paper:
Deepika Jhala, G.P.S. Rathore and Kiran Sisodiya. Some Properties of k-Jacobsthal Numbers with Arithmetic Indexes. Turkish Journal of Analysis and Number Theory. 2014; 2(4):119-124. doi: 10.12691/tjant-2-4-3

Abstract

In this paper, we derive various formulae for the sum of k-Jacobsthal numbers with indexes in an arithmetic sequence, say an+r for fixed integers a and r Also, we describe generating function and the alternated sum formula for k-Jacobsthal numbers with indexes in an arithmetic sequence.

Keywords:
k-jacobsthal numbers binet formula generating function

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Bolat C., Kose H., On the Properties of k-Fibonacci Numbers. Int. J.Contemp. Math. Sciences 2010, 22 (5), 1097-1105.
 
[2]  Campos H., Catarino P., Aires A.P., Vasco P. and Borges A., On Some Identities of k-Jacobsthal-Lucas Numbers, Int. Journal of Math. Analysis, 2014, 8 (10), 489-494.
 
[3]  Catarino P., On Some Identities and Generating Functions for k-Pell Numbers. Int. Journal of Math. Analysis 2013, 7 (38), 1877-1884.
 
[4]  Catarino P., Vasco P., Modified k-Pell Sequence: Some Identities and Ordinary Generating Function. Applied Mathematical Sciences 2013, 7 (121), 6031-6037.
 
[5]  Catarino P., Vasco P., On some Identities and Generating Functions for k-Pell-Lucas Sequence. Applied Mathematical Sciences 2013, 7 (98), 4867-4873.
 
[6]  Catarino P., On Some Identities for k-Fibonacci Sequence. International Journal of Contemporary mathematical Sciences 2014, 9 (1), 37-42.
 
[7]  Falcon S. and Plaza A., On k-Fibonacci Numbers of Arithmetic Indexes, Applied Mathematics and Computation, 2009, 208, 180-185.
 
[8]  Falcon S., On the k-Lucas Numbers, International Journal of Contemporary mathematical Sciences 2011, 6 (21), 1039-1050.
 
[9]  Falcon S., On the k-Lucas Numbers of Arithmetic Indexes, Applied Mathematics, 2012, 3, 1202-1206.
 
[10]  Horadam A. F., A Generalized Fibonacci Sequence, The American Mathematical Monthly, 1961, 68, 455-459.
 
[11]  Horadam A.F., Jacobsthal Representation Numbers. Fibonacci Quarterly, 1996, 34 (1), 40-54.
 
[12]  Jaiswal D. V., On a Generalized Fibonacci Sequence, Labdev Journal of Science and Technology, Part A, 1969, 7, 67-71.
 
[13]  Jhala D., Sisodiya K., Rathore G.P.S., On Some Identities for k-Jacobsthal Numbers. Int. Journal of Math. Analysis 2013, 7 (2), 551-556.
 
[14]  Lee G. Y., Lee S. G., Kim J. S., Shin H. K., The Binet Formula and the Representation of k-Generalized Fibonacci Numbers, Fibonacci Quarterly, 2001, 39 (2), 158-164.
 
[15]  Lee G. Y., Lee S. G., Shin H. K., On the k-Ggeneralized Fibonacci Matrix Qk, Linear Algebra Applications, 1997, 251, 73-88.
 
[16]  Slone NJA, The On-Line Encyclopedia of Integer Sequences, (2006), www.research.att.com/~njas/sequences/.
 
[17]  Walton J. E. and Horadam A. F., Some Further Identities for the Generalized Fibonacci sequence, Fibonacci Quarterly, 1974, 12 (3), 272-280.
 
[18]  Zai L. J. and Sheng L. J., Some Properties of the Generalization of the Fibonacci Sequence, Fibonacci Quarterly, 1987, 25 (2), 111-117.