Turkish Journal of Analysis and Number Theory
ISSN (Print): 2333-1100 ISSN (Online): 2333-1232 Website: http://www.sciepub.com/journal/tjant
Open Access
Journal Browser
Go
Turkish Journal of Analysis and Number Theory. 2014, 2(2), 47-52
DOI: 10.12691/tjant-2-2-4
Open AccessArticle

Modified SSOR Modelling for Linear Complementarity Problems

M.T. Yahyapour1 and S.A. Edalatpanah1,

1Department of Mathematics, Ramsar Branch, Islamic Azad University, Ramsar, Iran

Pub. Date: April 17, 2014

Cite this paper:
M.T. Yahyapour and S.A. Edalatpanah. Modified SSOR Modelling for Linear Complementarity Problems. Turkish Journal of Analysis and Number Theory. 2014; 2(2):47-52. doi: 10.12691/tjant-2-2-4

Abstract

In this paper, we present an efficient numerical method for solving the linear complementarity problems based on preconditioning strategy. Furthermore, the convergence properties of the proposed method have been analyzed and compared with symmetric successive over-relaxation (SSOR) method. Finally, some numerical experiments are illustrated to show the efficiency of the proposed method.

Keywords:
linear complementarity problem preconditioning iterative methods SSOR method comparison theorems H-matrix

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 1

References:

[1]  Murty, K.G. (1988). Linear Complementarity, Linear and Nonlinear Programming. Heldermann Verlag: Berlin.
 
[2]  Cottle, R.W., Pang, J.S.&Stone, R.E. (1992). The Linear Complementarity Problem. Academic Press: New York.
 
[3]  Bazaraa, M.S., Sherali, H.D.& Shetty CM. (2006). Nonlinear programming, Theory and algorithms. Third edition. Hoboken, NJ: Wiley-Interscience.
 
[4]  Yuan, D., Song, Y.Z. (2003). Modified AOR methods for linear complementarity problem. Appl. Math. Comput. 140, 53-67.
 
[5]  Bai, Z.Z., Evans, D.J. (1997). Matrix multisplitting relaxation methods for linear complementarity Problems. Int. J. Comput. Math. 63, 309-326.
 
[6]  Li, Y., Dai, P.(2007). Generalized AOR methods for linear complementarity problem. Appl. Math. Comput. 188, 7-18.
 
[7]  Saberi Najafi, H., Edalatpanah, S. A. (2013). On the Convergence Regions of Generalized AOR Methods for Linear Complementarity Problems, J. Optim. Theory. Appl. 156, 859-866.
 
[8]  Dehghan, M., Hajarian, M. (2009). Convergence of SSOR methods for linear complementarity problems, Operations Research Letters. 37, 219-223.
 
[9]  Saberi Najafi, H., Edalatpanah, S. A. (2012). A kind of symmetrical iterative methods to solve special class of LCP (M,q), International Journal of Applied Mathematics and Applications, 4 (2) 183-189.
 
[10]  Saberi Najafi, H., Edalatpanah, S. A. (2013). SOR-like methods for non-Hermitian positive definite linear complementarity problems, Advanced Modeling and Optimization, 15(3), 697-704.
 
[11]  Cvetkovic Lj., Rapajic S. (2007). How to improve MAOR method convergence area for linear complementarity problems. Appl. Math. Comput. 162, 577-584.
 
[12]  Dong J.-L., Jiang M.-Q. (2009). A modified modulus method for symmetric positive-definite linear complementarity problems. Numer. Linear Algebra Appl. 16, 129-143.
 
[13]  Bai Z.-Z. (2010). Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17, 917-933.
 
[14]  Zhang L.-L.(2011). Two-step modulus based matrix splitting iteration method for linear complementarity problems. Numer. Algor. 57, 83-99.
 
[15]  Cvetkovic Lj., Kostic V. (2013). A note on the convergence of the MSMAOR method for linear complementarity problems. Numer. Linear Algebra Appl.
 
[16]  Saberi Najafi H., Edalatpanah S. A. (2013). Modification of iterative methods for solving linear complementarity problems. Engrg. Comput. 30, 910-923.
 
[17]  Saberi Najafi H., Edalatpanah S. A.(2013). Iterative methods with analytical preconditioning technique to linear complementarity problems. RAIRO-Oper. Res. 47, 59-71.
 
[18]  Berman, A., Plemmons, R.J. (1979). Nonnegative Matrices in the Mathematical Sciences. Academic Press: New York.
 
[19]  Varga, R.S. (2000). Matrix Iterative Analysis, second ed., Berlin :Springer.
 
[20]  Frommer, A., Szyld, D.B. (1992). H-splitting and two-stage iterative methods. Numer. Math. 63, 345-356.
 
[21]  Milaszewicz, J.P.(1987). Improving Jacobi and Gauss–Seidel iterations. Linear Algebra Appl 93, 161-170.
 
[22]  Usui, M., Niki, H.&Kohno, T.(1994).Adaptive Gauss Seidel method for linear systems. Intern. J. Computer Math. 51, 119-125.
 
[23]  Hirano, H., Niki, H.(2011). Application of a preconditioning iterative method to the computation of fluid flow. Numer.Funct.Anal.And Optimiz. 22, 405-417.
 
[24]  Li, J.C., Li., W.(2008). The Optimal Preconditioner of Strictly Diagonally Dominant Z-matrix. Acta Mathematicae Applicatae Sinica, English Series. 24, 305-312.
 
[25]  Saberi Najafi, H., Edalatpanah, S. A.(2013). Comparison analysis for improving preconditioned SOR-type iterative method, Numerical Analysis and Applications. 6, 62-70.
 
[26]  Saberi Najafi, H., Edalatpanah, S. A.(2013). A collection of new preconditioners for solving linear systems, Sci. Res. Essays. 8(31), 1522-1531.
 
[27]  Saberi Najafi, H., Edalatpanah, S. A, Gravvanis, G.A. (2014). An efficient method for computing the inverse of arrowhead matrices. Applied Mathematics Letters, 33, 1-5.
 
[28]  Saberi Najafi, H., Edalatpanah, S. A, Refahi Sheikhani, A. H. (2014). Convergence Analysis of Modified Iterative Methods to Solve Linear Systems, Mediterranean Journal of Mathematics.