Turkish Journal of Analysis and Number Theory
ISSN (Print): 2333-1100 ISSN (Online): 2333-1232 Website: http://www.sciepub.com/journal/tjant
Open Access
Journal Browser
Go
Turkish Journal of Analysis and Number Theory. 2014, 2(1), 23-28
DOI: 10.12691/tjant-2-1-6
Open AccessArticle

Hermite-Hadamard Type Inequalities for (m, h1, h2)-Convex Functions Via Riemann-Liouville Fractional Integrals

De-Ping Shi1, Bo-Yan Xi1, and Feng Qi1, 2

1College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, China

2Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, China;Institute of Mathematics, Henan Polytechnic University, Jiaozuo City, Henan Province, China

Pub. Date: March 16, 2014

Cite this paper:
De-Ping Shi, Bo-Yan Xi and Feng Qi. Hermite-Hadamard Type Inequalities for (m, h1, h2)-Convex Functions Via Riemann-Liouville Fractional Integrals. Turkish Journal of Analysis and Number Theory. 2014; 2(1):23-28. doi: 10.12691/tjant-2-1-6

Abstract

In the paper, via Riemann-Liouville fractional integration, the authors present some new inequalities of Hermite-Hadamard type for functions whose derivatives in absolute value are (m, h1, h2)-convex.

Keywords:
Riemann-Liouville fractional integral (m h1 h2)-convex function integral inequality of Hermite-Hadamard type

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  R. Gorenflo and F. Mainardi, Fractional Calculus, Integral and Differential Equations of Fractional order, Springer, Wien, 1997.
 
[2]  H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48 (1994), no. 1, 100-111.
 
[3]  S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), no. 5, 91-95.
 
[4]  C. E. M. Pearce and J. Pečarič, Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., 13 (2000), no. 2, 51-55.
 
[5]  U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput., 147 (2004), no. 1, 137-146.
 
[6]  S. S. Dragomir and S. Fitzpatrik, The Hadamard’s inequality for s-convex functions in the second sense, Demonstratio Math., 32 (1999), no. 4, 687-696.
 
[7]  S. Varosanec, on h-convexity, J. Math. Anal. Appl., 326 (2007), 303-311.
 
[8]  R.-F. Bai, F Qi, and B.-Y. Xi, Hermite-Hadamard type inequalities for the m- and (a, m) -logarithmically convex functions, Filomat, 27 (1) (2013), 1-7.
 
[9]  Z. Dahmani, New inequalities in fractional integrals, Int, J. Nonlinear Sci., 9 (2010), no. 4, 155-160.
 
[10]  E. K. Godunova and V. I. Levin, Neravenstva dlja funkcil sirokogo klassa, soderzascego vypuklye, monotonnye I nekotorye drugie vidy funkii, Vycislitel. Mat. i. Fiz. Mezvuzov. Sb. Nauc. Trudov, MGPI, Moskva, 1985, 138-142.
 
[11]  V. G. Mihesan, A generalization of the convexity, Seminar on Functional Equations, Approx. Convex, Clujnapoca, 1993. (Romania).
 
[12]  G. Maksa, Z. S. Páles, The equality case in some recent convexity inequalities, Opuscula Math., 31 (2011), no. 2, 269-277.
 
[13]  M. Z. Sarikaya, E. Set, H. Yaldiz, and N. Basak, Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model. 57 (2013), 2403-2407.