Turkish Journal of Analysis and Number Theory
ISSN (Print): 2333-1100 ISSN (Online): 2333-1232 Website: http://www.sciepub.com/journal/tjant
Open Access
Journal Browser
Go
Turkish Journal of Analysis and Number Theory. 2019, 7(5), 135-139
DOI: 10.12691/tjant-7-5-2
Open AccessArticle

Symmetric Functions of Generalized Polynomials of Second Order

Hind Merzouk1, Ali Boussayoud1, and Mourad Chelgham1

1LMAM Laboratory and Department of Mathematics, Mohamed Seddik Ben Yahia University, Jijel, Algeria

Pub. Date: October 18, 2019

Cite this paper:
Hind Merzouk, Ali Boussayoud and Mourad Chelgham. Symmetric Functions of Generalized Polynomials of Second Order. Turkish Journal of Analysis and Number Theory. 2019; 7(5):135-139. doi: 10.12691/tjant-7-5-2

Abstract

In this paper, we will recover the generating functions of generalized polynomials of second order. The technic used her is based on the theory of the so called symmetric functions.

Keywords:
generating functions generalized polynomials of second order symmetric functions

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  T.S. Chihara, an Introduction to Orthogonal Polynomials, Gordon and Breach, New York, (1978).
 
[2]  A. Boussayoud, S. Boughaba, On Some Identities and Generating Functions for k-Pell sequences and Chebyshev polynomials, Online J. Anal. Comb. 14 #3, 1-13, (2019).
 
[3]  A. Boussayoud, S. Boughaba, M. Kerada, S. Araci and M. Acikgoz, Generating functions of binary products of k-Fibonacci and orthogonal polynomials, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat.113, 2575-2586, (2019).
 
[4]  A. Boussayoud, A. Abderrezzak, Complete Homogeneous Symmetric Functions and Hadamard Product, Ars Comb. 144, 81-90, (2019).
 
[5]  A. Boussayoud, S. Boughaba, M. Kerada, Generating Functions k-Fibonacci and k-Jacobsthal numbers at negative indices, Electron. J. Math. Analysis Appl. 6(2), 195-202, (2018).
 
[6]  R. André-Jeannin, A note on a general class of polynomials, Fibonacci. Q. 32, 445-454, (1994).
 
[7]  R. André-Jeannin, A note on a general class of polynomials, II, Fibonacci. Q. 33 ,341-351, (1995).
 
[8]  A. Boussayoud, M. Chelgham, S. Boughaba, On some identities and generating functions for Mersenne numbers and polynomials, Turkish Journal of Analysis and Number Theory.6(3), 93-97, (2018).
 
[9]  A. Boussayoud, On some identities and generating functions for Pell-Lucas numbers, Online.J. Anal. Comb. 12 #1, 1-10, (2017).
 
[10]  I. Bruce, A modified Tribonacci sequence, Fibonacci .Q. 22 (3), 244-246, (1984).
 
[11]  G. E. Bergum and V. E. Hoggatt, Sums and products for recurring sequences, Fibonacci.Q. 13, 115-120, (1975).
 
[12]  M.Catalani, Identities for Tribonacci related sequences, arXiv preprint, https://arxiv.org/pdf/math/0209179. pdf math/0209179, (2002).
 
[13]  E. Choi, Modular tribonacci Numbers by Matrix Method, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 20 (3), 207-221, (2013).
 
[14]  R. Florez, R. Higuita, and A. Mukherjee, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers, 18, Paper No. A14, (2018).
 
[15]  R. Florez, R. Higuita, and A. Mukherjee, Alternating sums in the Hosoya polynomial triangle,J. Integer Seq. 17, Article 14. 9. 5, (2014).
 
[16]  Y. Soykan, Tribonacci and Tribonacci-Lucas Sedenions, arXiv: 1808.09248v2, (2018).
 
[17]  Y. Soykan, I. Okumus, F Tasdemir, On Generalized Tribonacci Sedenions, arXiv: 1901.05312v1, (2019).