Turkish Journal of Analysis and Number Theory. 2019, 7(1), 18-22
DOI: 10.12691/tjant-7-1-4
Open AccessArticle
Jumei Zhang1, Li Yin1, and Wenyan Cui1
1School of Science, Binzhou University
Pub. Date: February 23, 2019
Cite this paper:
Jumei Zhang, Li Yin and Wenyan Cui. Monotonic Properties of Generalized Nielsen's β-function. Turkish Journal of Analysis and Number Theory. 2019; 7(1):18-22. doi: 10.12691/tjant-7-1-4
Abstract
In the paper, we discuss a new k-generalization of the Nielsen's β-function. Later, we study the completely monotonicity, convexity and inequalities of the new function.Keywords:
Nielsen's β-function k-generalization inequality completely monotonic
This work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/
References:
[1] | D. F. Connon, On an integral involving the digamma function. arXiv: 1212. 1432 [math.GM]. |
|
[2] | I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products. Edited by D. Zwillinger and V. Moll. Academic Press, New York, Sth Edition, 2014. |
|
[3] | K. Nantomah, On Some Properties and Inequalities for the Nielsen's β Function, arXiv: 1708. 06604vl 1432 [math.CA], 12 Pages. |
|
[4] | N. Nielsen, Handbuch der Theorie der Gammafunction, First Edition, Leipzig: B. G. Teubner, 1906. |
|
[5] | K. Nantomah, A generalization of the Nielsen's β-function. Probl. Anal. Issue 1998-6262 (2)(2018), 16-26. |
|
[6] | K. Nantomah, Monotonicity and convexity properties of the Nielsen's β-function. Probl. Anal. Issues Anal. 6(24)(2) (2017), 81-93. |
|
[7] | K. Nantomah, Monotonicity and convexity properties and some inequalities involving a generalized form of the Wallis' cosine formula. Asian Research Journal of Mathematics, 6(3)(2017), 1-10. |
|
[8] | Boyadzhiev K. N., Medina L. A., and Moll V. H. The integrals in Gradshteyn and Ryzhik, Part II: The incomplete beta function. Scientia, Ser. A, Math. Sci., 2009, vol. 18. pp. 61-75. |
|