Turkish Journal of Analysis and Number Theory
ISSN (Print): 2333-1100 ISSN (Online): 2333-1232 Website: http://www.sciepub.com/journal/tjant
Open Access
Journal Browser
Go
Turkish Journal of Analysis and Number Theory. 2019, 7(1), 11-17
DOI: 10.12691/tjant-7-1-3
Open AccessArticle

Spectral Rectangular Collocation Formula: An Approach for Solving Oscillatory Initial Value Problems and/or Boundary Value Problems in Ordinary Differential Equations

Oluwasegun M. Ibrahim1, 2, and Piers W. Lawrence3,

1African Institute for Mathematical Sciences, Rwanda

2Department of Mathematical Sciences, Adekunle Ajasin University Akungba-Akoko, Nigeria

3EigenPoly Research Center Leuven, Belgium

Pub. Date: February 20, 2019

Cite this paper:
Oluwasegun M. Ibrahim and Piers W. Lawrence. Spectral Rectangular Collocation Formula: An Approach for Solving Oscillatory Initial Value Problems and/or Boundary Value Problems in Ordinary Differential Equations. Turkish Journal of Analysis and Number Theory. 2019; 7(1):11-17. doi: 10.12691/tjant-7-1-3

Abstract

The idea of rectangularization of a differentiation matrix through collocation was recently suggested to be more useful in discretization process, especially when the traditional row replacement approach fails. In this regard, we employ the state-of-the-art technique of rectangularization to discretize some oscillatory initial value problems (IVPs) and also extended the new approach to a non-linear boundary value problem (BVP). The numerical implementation was composed using some few lines of executable Python codes. Our findings are instructive and quite revealing and supported by evidence from our numerical experiments and simulations.

Keywords:
spectral rectangular collocation polynomial interpolation oscillatory solutions initial value problems boundary value problems ordinary differential equations.

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  David Gottlieb and Steven A Orszag. Numerical analysis of spectral methods: theory and applications. SIAM, 1977.
 
[2]  John P. Boyd. Chebyshev and Fourier spectral methods. Courier Corporation, 2001.
 
[3]  Lloyd N. Trefethen. Spectral methods in MATLAB, volume 10. Society for Industrial and Applied Mathematics, 2000.
 
[4]  Lloyd N. Trefethen. Approximation theory and approximation practice. Society for Industrial and Applied Mathematics, 2013.
 
[5]  Jean-Paul Berrut and Lloyd N. Trefethen. Barycentric lagrange interpolation. SIAM review, 46 (3):501-517, 2004.
 
[6]  Jie Shen, Tao Tang, and Li-Lian Wang. Spectral methods: algorithms, analysis and applications, volume 41. Springer Science & Business Media, 2011.
 
[7]  Tobin A. Driscoll and Nicholas Hale. Rectangular spectral collocation. IMA Journal of Numerical Analysis, 32(1):108-132, 2015.
 
[8]  Sandile S. Motsa., Phumlani G. Dlamini, and M. Khumalo Spectral relaxation method and spectral quasilinearization Method for Solving Unsteady Boundary Layer Flow Problems. Advances in Mathematical Physics, Article ID 341964: 12pages, 2014.
 
[9]  Richard Baltensperger and Manfred R. Trummer. Spectral differencing with a twist. SIAM Journal on Scientific Computing, 24(5):1465-1487, 2003.
 
[10]  Kuan Xu. The chebyshev points of the first kind. Applied Numerical Mathematics, 102: 17-30, 2016.
 
[11]  Kuan Xu and Nicholas Hale. Explicit construction of rectangular differentiation matrices. IMA Journal of Numerical Analysis, 36(2): 618-632, 2016.
 
[12]  Oluwasegun M. Ibrahim. Spectral collocation methods for solving differential equations and an human african trypanosomiasis disease model. M.Sc. Thesis: African Institute for Mathematical Sciences, Rwanda, 2017.
 
[13]  Oluwasegun M. Ibrahim, Piers W. Lawrence, and Monday N.O. Ikhile. Spectral collocation method for the numerical solution of ordinary differential equations. Transaction of the Nigerian Association of Mathematical Physics, 495-100, 2017.
 
[14]  Ásgeir Birkisson. Automatic reformulation of ODE to systems of first order equations. ACM Transaction on Mathematical Software, 44(3): 1-18, 2018.
 
[15]  Oluwasegun M. Ibrahim. High order symmetric super-implicit hybrid LMMs with minimal phaselag error. M.Sc. Thesis: University of Benin, Benin City, Nigeria, 2016.
 
[16]  Oluwasegun M. Ibrahim and Monday N.O. Ikhile. Highly stable super-implicit hybrid methods for special second order IVPs. American Journal of Applied Scientific Research, 3(3): 21-27, 2017.
 
[17]  Oluwasegun M. Ibrahim and Monday N.O. Ikhile. On the construction of high accuracy symmetric, super-implicit hybrid formulas with phase-lag properties. Transaction of the Nigerian Association of Mathematical Physics, 4: 101-108, 2017.
 
[18]  Robert I. Okuonghae and Monday N.O. Ikhile. Stiffly stable second derivative LMMs with two hybrid points. Num. Analys. and Appl., 8(3):248-259, 2015.
 
[19]  A. Shoki. A new high order implicit four-step method with vanished phase-lag and some of its derivatives for the numerical solution of the Radial Schodinger equation. J. Modern Methods in Num. Maths., 8(1-2):1-16, 2017.
 
[20]  Andre J. Weideman and Lloyd N. Trefethen. The eigenvalues of second-order spectral differentiation matrices. SIAM Journal on Numerical Analysis, 25(6):1279-1298, 1988.
 
[21]  Piers W. Lawrence. Fast reduction of generalized companion matrix pairs for barycentric lagrange interpolants. SIAM Journal on Matrix Analysis and Applications, 34(3):1277-1300, 2013a.
 
[22]  Eunice Y. S. Chan, Robert M. Corless, Laureano Gonzàlez-Vega, Juan R. Sendra, and Juana Sendra. Algebraic Linearizations of Matrix Polynomials, 563: 373-399, 2019.
 
[23]  Jared L. Aurentz and Lloyd N. Trefethen. Block operators and spectral discretizations. SIAM Review, 59(2): 423-446, 2017.
 
[24]  Nicholas J. Higham. The numerical stability of barycentric lagrange interpolation. IMA Journal of Numerical Analysis, 24(4): 547-556, 2004.
 
[25]  Marcus Webb, Lloyd N. Trefethen, and Pedro Gonnet. Stability of barycentric interpolation formulas for extrapolation. SIAM Journal on Scientific Computing, 34(6): A3009-A3015, 2012.
 
[26]  Piers W. Lawrence and Robert M. Corless. Stability of root finding for barycentric lagrange interpolants. Numerical Algorithms, 65(3):447-464, 2014.
 
[27]  Beny Neta. P-stable high-order super-implicit and Obrechkoff methods for periodic initial value problems. Computers & Mathematics with Applications, 54(1):117-126, 2007.
 
[28]  John D. Lambert and Alistair G. Watson. Symmetric multistip methods for periodic initial value problems. IMA Journal of Applied Mathematics, 18(2):189-202, 1976.
 
[29]  Jefferey Cash. High order p-stable formulae for the numerical integration of periodic initial value problems. Numerische Mathematik, 37(3):355-370, 1981.
 
[30]  Simeon O. Fatunla, Monday N.O. Ikhile, and Francis O. Otunta. A class of p-stable linear multistep numerical methods. International journal of computer mathematics, 72(1): 1-13, 1999.
 
[31]  Robert M. Corless and Nicolas Fillion. A graduate introduction to numerical methods. Springer, 2013.
 
[32]  Monday N.O. Ikhile. Coefficients for studying one-step rational schemes for IVPs in ODEs: II. Computers & Mathematics with Applications, 44(3-4):545-557, 2002.
 
[33]  Fd Van Niekerk. Non-linear one-step methods for initial value problems. Computers & Mathematics with Applications, 13(4): 367-371, 1987.
 
[34]  Simeon O. Fatunla. Nonlinear multistep methods for initial value problems. Computers & Mathematics with Applications, 8(3): 231-239, 1982.
 
[35]  Lloyd N. Trefethen. Chebfun and approximation theory, chapter 4 in: Tobin A. Driscoll, Nicholas Hale, and Lloyd N. Trefethen, editors, chebfun guide, 2014.