Sustainable Energy
ISSN (Print): 2372-2134 ISSN (Online): 2372-2142 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
Sustainable Energy. 2017, 5(1), 6-15
DOI: 10.12691/rse-5-1-2
Open AccessArticle

An application of the Multilayer Perceptron: Estimation of Global Solar Radiation and the Establishment of Solar Radiation Maps of Togo

Komi Apélété AMOU1, , Tchamye Tcha-Esso BOROZE1, Sanoussi OURO-DJOBO1, Koffi SAGNA1, Yaovi Ouézou AZOUMA1, Magolmèèna BANNA1 and Kossi NAPO1

1Solar Energy Laboratory, Department of Physics, Faculty of Sciences, University of Lomé, Lomé, Togo

Pub. Date: August 26, 2017

Cite this paper:
Komi Apélété AMOU, Tchamye Tcha-Esso BOROZE, Sanoussi OURO-DJOBO, Koffi SAGNA, Yaovi Ouézou AZOUMA, Magolmèèna BANNA and Kossi NAPO. An application of the Multilayer Perceptron: Estimation of Global Solar Radiation and the Establishment of Solar Radiation Maps of Togo. Sustainable Energy. 2017; 5(1):6-15. doi: 10.12691/rse-5-1-2


This paper presents a new neural network approach for the generation of synthetic monthly radiation data for nine localities in Togo. The neural model employed is the well-known Multi-Layer Perceptron (MLP) paradigm, in feedback architecture, using a record of historical values for the supervised network training. The method is based on the MLP ability to extract, from a sufficiently general training set, the existing relationships between variables whose interdependence is unknown a priori. Simulation results are compared to the measured values for the three towns where solar irradiation is measured in Togo. The results show that the generated values are of the real values. The method has been developed using data values from Lomé, Atakpamé and Mango, and is generalized to generate data of any location for the establishment of solar maps. Indeed, the proposed methodology is of general applicability to the estimation of highly complex temporal series.

estimation neural model multi Layer Perceptron (MLP) solar radiation maps

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 18


[1]  Angström, A., 1956. On the computation of global solar radiation from records of sunshine. Arkiv Geophysik 3(23), 551-556.
[2]  Rietveld, M.R., 1978. A new method for estimating the regression coefficients in the formula relating solar radiation to sunshine. Agriculture Meteorology 19, 243-252.
[3]  Newland, F.J., 1989. A study of solar radiation models for the coastal region of south China. Solar Energy 43(4), 227-235.
[4]  Gopinathan, K., 1988. Computing the monthly mean daily diffuse radiation from clearness index and percent possible sunshine. Solar Energy 41 (4), 379-385.
[5]  Akinoglu, B., Ecevit, A., 1990. Construction of a quadratic model using modified Angström coefficients to estimate global solar radiation. Solar Energy 45 (2), 85-92.
[6]  Dorvlo, A., Ampratwum, B., 1999. Modeling of weather data for Oman. Renewable Energy 17, 421-428.
[7]  Philips, W.F., 1984. Harmonic analysis of climatic data. Solar Energy 32 (3), 319-328.
[8]  Herrero, A.C., 1993. Harmonic analysis of monthly solar radiation data in Spain. Ambient Energy 14 (1), 35-40.
[9]  Rumelhart, D.E., Hinton, G.E., Williams, J.R., 1986. Learning Internal Representation by Error Propagation Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1. MIT Press, MA, Cambridge (Chapter 8).
[10]  Hertz, J., Krogh, A., Palmer, R., 1995. Introduction to the Theory of Neural Computation. Addison-Wesley, Canada.
[11]  Declan Conway, Emma Archer van Garderen, Delphine Deryng, Steve Dorling, Tobias Krueger, Willem Landman, Bruce Lankford, Karen Lebek, Tim Osborn, Claudia Ringler, James Thurlow, Tingju Zhu, Carole Dalin, 2015. “Climate and southern Africa's water-energy-food nexus”, in Nature Climate Change of Nature Publishing Group, 5 (9), 837.
[12]  Al-Alawi, S.M., Al-Hinai, H.A., 1998. An ANN-based approach for predicting global solar radiation in locations with no measurements. Renewable Energy 14(1-4), 199-204.
[13]  Togrul, I.T., Onat, E., 1999. A study for estimating the solar radiation in Elazıg using geographical and meteorological data. Energy Conversion and Management 40, 1577-1584.
[14]  Kalogirou, S., Michanelides, S., Tymbios, F., 2002. Prediction of maximum solar radiation using artificial neural networks. In: Proceedings of the WREC VII, Germany.
[15]  Sözen, A., Arcaklıog˘ lu, E., O¨ Zalp, M., 2004. Estimation of solar potential in Turkey by artificial neural networks usinage meteorological and geographical data. Energy Conversion and Management 45, 3033-3052.
[16]  Yang, K., Koike, T., 2002. Estimating surface solar-radiation from upperair humidity. Solar Energy 72 (2), 177-186.
[17]  Elizondo, D., Hoogenboom, G., McClendon, R., 1996. Development of a neural network to predict daily solar radiation. Agricultural and Forest Meteorology 71, 115-132.
[18]  Mohandes, M., Rehman, S., Halawani, T.O., 1998. Estimation of global solar radiation using artificial neural networks. Renewable Energy 14 (1-4), 179-184.
[19]  Mohandes, M., Balghonaim, A., Kassas, M., Rehman, S., Halawani, T.O., 2000. Use of radial basis functions for estimating monthly mean daily solar radiation. Solar Energy 68 (2), 161-168.
[20]  Hontoria, L., Aguilera, J., Riesco, J., Zufıria, P., 2001. Recurrent neural supervised models for generating solar radiation synthetic series. Journal of Intelligent and Robotic Systems 31, 201-221.
[21]  Hontoria, L., Aguilera, J., Zufı ´ria, P., 2002. Generation of hourly irradiation synthetic series using the neural network multilayer perceptron. Solar Energy 72, 441-446.
[22]  Tasadduq, I., Rehman, S., Bubshait, K., 2002. Application of neural networks for the prediction of hourly mean surface temperature in Saudi Arabia. Renewable Energy 25, 545-554.
[23]  Tymvios, F.S., Jacovides, C.P., Michaelides, S.C., Scouteli, C., 2005. Comparative study of Angström’s and artificial neural networks’ methodologies in estimating global solar radiation. Solar Energy 78, 752-762.
[24]  Wasserman, P., 1993. Advanced Methods in Neural Computing. Van Nostrand Reinhold, New York.
[25]  Lippmann, R.P., 1987. An Introduction to Computing with Neural Nets. IEEE ASSP Magazine, pp. 4-22.
[26]  Bishop, C.M., 1996. Neural Networks for Pattern Recognition. Oxford University Press, Oxford.
[27]  Pham, D.T., Liu, X., 1995. Neural Networks for Identification, Predication and Control. Springer, London.
[28]  Haykin, S., 1994. Neural Networks. A Comprehensive Foundation. Macmillan Publishing Company.
[29]  Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are universal approximators. Neural Networks 2 (5), 359-366.
[30]  Hontoria, L., Riesco, J., Zufiria, P., Aguilera, J., 1999. Improved generation of hourly solar radiation artificial series using neural networks. EANN99.
[31]  Hontoria, L., Riesco, J., Zufiria, P., Aguilera, J., 2000. Application of neural networks in the solar radiation field. Obtainment of solar radiation maps. 16th European Photovoltaic Solar Energy Conference and Exhibition. Glasgow, 1-5 May.
[32]  Zufiria, P., Vazquez, A., Riesco, J., Aguilera, J., Hontoria, L., 1999. A neural network approach for generating solar radiation artificial series. In: Proceedings of the (IWANN099). 4-5 June. Alicante, Spain.
[33]  Chatelin, C., Les Multi Layer Perceptron (MLP) Nov 2003.
[34]  Rude, J., Développement d’un modèle statistique neuronal pour la description fine de la pollution par le dioxyde d’azote : application à la région parisienne, Université Paris XII - Val de Marne, Thèse de doctorat, 2008.
[35]  Ammar, Y. M., mise en œuvre de réseaux de neurones pour la modélisation de cinétiques réactionnelles en vue de la transposition batch/continu, Thèse de Doctorat de l’I.N.P. – Toulouse – 17 juillet 2007.
[36]  Hontoria, L., Aguilera, J., Zufiria, P., 2005. An application of the multilayer perceptron: Solar radiation maps in Spain. Solar Energy 79, 523-530.