Sustainable Energy
ISSN (Print): 2372-2134 ISSN (Online): 2372-2142 Website: http://www.sciepub.com/journal/rse Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
Sustainable Energy. 2016, 4(1), 1-6
DOI: 10.12691/rse-4-1-1
Open AccessArticle

Wake Interaction of NREL Wind Turbines Using a Lattice Boltzmann Method

Jun Xu1,

1Department of Engineering Technology, Tarleton State University, Stephenville, USA

Pub. Date: January 26, 2016

Cite this paper:
Jun Xu. Wake Interaction of NREL Wind Turbines Using a Lattice Boltzmann Method. Sustainable Energy. 2016; 4(1):1-6. doi: 10.12691/rse-4-1-1

Abstract

Wind turbines installed in arrays in a wind farm tend to experience reduced power production and increased fatigue load on the blades which can prematurely wear down turbine hardware. In this paper, the aerodynamic characteristics of a single wind turbine was studied numerically first. Then the aerodynamic impacts of three in-line wind turbines were investigated. Turbine wake simulations were performed on NREL unsteady aerodynamics experiment phase VI two-bladed wind turbines. The Lattice Boltzmann Method (LBM) was used to model the wakes behind turbines. The ability of LBM to capture wake evolution and detailed flow characteristics were explored for a single and three in-line turbines. The model results provide an insight on the turbine wake interactions and demonstrate that the LBM can simulate the complexity of the wake interactions efficiently.

Keywords:
CFD NREL Phase VI wind turbine wake interaction Lattice Boltzmann Method

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 10

References:

[1]  R. Gomez-Elvira, A. Crespo, E. Migoya, F. Manuel, J. Hernandez, Anisotropy of turbulence in wind turbine wakes, Journal of Wind Engineering and Industrial Aerodynamics 93 (2005) 797-814.
 
[2]  J.N. Sorensen, Aerodynamic Aspects of Wind Energy Conversion, Annual Review of Fluid Mechanics, Vol 43 43 (2011) 427-448.
 
[3]  A.C. Hansen, C.P. Butterfield, Aerodynamics of Horizontal-Axis Wind Turbines, Annual Review of Fluid Mechanics 25 (1993) 115-149.
 
[4]  S. Schreck, The NREL Full-Scale Wind Tunnel Experiment, Wind Energy (2002) 77-84.
 
[5]  U. Frisch, Lattice Gas Automata for the Navier-Stokes Equations - a New Approach to Hydrodynamics and Turbulence, Physica Scripta 40 (1989) 423-423.
 
[6]  B. Sanderse, S.P. van der Pijl, B. Koren, Review of computational fluid dynamics for wind turbine wake aerodynamics, Wind Energy 14 (2011) 799-819.
 
[7]  J. Peinke, Oberlack, M., Talamelli, A., Progress in Turbulence III, Editoin Edition, Springer, 2010.
 
[8]  J. Johansen, H.A. Madsen, M. Gaunaa, C. Bak, N.N. Sorensen, Design of a Wind Turbine Rotor for Maximum Aerodynamic Efficiency, Wind Energy 12 (2009) 261-273.
 
[9]  J.N. Sorensen, W.Z. Shen, Numerical modeling of wind turbine wakes, Journal of Fluids Engineering-Transactions of the Asme 124 (2002) 393-399.
 
[10]  A. Bechmann, N.N. Sorensen, F. Zahle, CFD simulations of the MEXICO rotor, Wind Energy 14 (2011) 677-689.
 
[11]  N.N. Sorensen, A. Bechmann, P.E. Rethore, F. Zahle, Near wake Reynolds-averaged Navier-Stokes predictions of the wake behind the MEXICO rotor in axial and yawed flow conditions, Wind Energy 17 (2014) 75-86.
 
[12]  L.S. Hedges, A.K. Travin, P.R. Spalart, Detached-Eddy Simulations over a simplified landing gear, Journal of Fluids Engineering-Transactions of the Asme 124 (2002) 413-423.
 
[13]  P. Sagaut, Large Eddy Simulation for Incompressible Flows, Editoin Edition, Springer, 2006.
 
[14]  P. Chatelain, S. Backaert, G. Winckelmans, S. Kern, Large Eddy Simulation of Wind Turbine Wakes, Flow Turbulence and Combustion 91 (2013) 587-605.
 
[15]  H. Lu, F. Porte-Agel, Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer, Physics of Fluids 23 (2011).
 
[16]  M. Calaf, C. Meneveau, J. Meyers, Large eddy simulation study of fully developed wind-turbine array boundary layers, Physics of Fluids 22 (2010).
 
[17]  J. Meyers, C. Meneveau, Optimal turbine spacing in fully developed wind farm boundary layers, Wind Energy 15 (2012) 305-317.
 
[18]  M.J. Churchfield, S. Lee, J. Michalakes, P.J. Moriarty, A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics, Journal of Turbulence 13 (2012) 1-32.
 
[19]  J.O. Mo, A. Choudhry, M. Arjomandi, Y.H. Lee, Large eddy simulation of the wind turbine wake characteristics in the numerical wind tunnel model, Journal of Wind Engineering and Industrial Aerodynamics 112 (2013) 11-24.
 
[20]  O. Fleig, M. Lida, C. Arakawa, Wind turbine blade tip flow and noise prediction by large-eddy simulation, Journal of Solar Energy Engineering-Transactions of the Asme 126 (2004) 1017-1024.
 
[21]  S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Editoin Edition, Oxford University Press, 2001.
 
[22]  S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows, Annual Review of Fluid Mechanics 30 (1998) 329-364.
 
[23]  A.R. Henderson, C. Morgan, B. Smith, H.C. Sorensen, R.J. Barthelmie, B. Boesmans, Offshore wind energy in Europe - A review of the state-of-the-art, Wind Energy 6 (2003) 35-52.
 
[24]  R.J. Barthelmie, L. Folkerts, G.C. Larsen, K. Rados, S.C. Pryor, S.T. Frandsen, B. Lange, G. Schepers, Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar, Journal of Atmospheric and Oceanic Technology 23 (2006) 888-901.
 
[25]  M.-S.K. Franck Perot, and Mohammed Meskine, NREL wind turbine aerodynamics validation and noise predictions using a Lattice Boltzmann Method, 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), 2012.
 
[26]  D.Z. Yu, R.W. Mei, W. Shyy, A multi-block lattice Boltzmann method for viscous fluid flows, International Journal for Numerical Methods in Fluids 39 (2002) 99-120.
 
[27]  M.M. Hand, Simms, D.A., Fingersh, L.J., Jager, D.W., Cotrell, J.R., Schreck, S., and Larwood, S.M., Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns, NREL, 2001.
 
[28]  J. Jonkman, S. Butterfield, W. Musial, G. Scott, Definition of a 5-MW reference wind turbine for offshore system development, National Renewable Energy Laboratory, 2009, pp. 1-14.
 
[29]  D.O. Yu, J.Y. You, O.J. Kwon, Numerical investigation of unsteady aerodynamics of a Horizontal-axis wind turbine under yawed flow conditions, Wind Energy 16 (2013) 711-727.
 
[30]  R. Lanzafame, S. Mauro, M. Messina, Wind turbine CFD modeling using a correlation-based transitional model, Renewable Energy 52 (2013) 31-39.
 
[31]  Y. Li, K.-J. Paik, T. Xing, P.M. Carrica, Dynamic overset CFD simulations of wind turbine aerodynamics, Renewable Energy 37 (2012) 285-298.
 
[32]  N. Sezer-Uzol, O. Uzol, Effect of steady and transient wind shear on the wake structure and performance of a horizontal axis wind turbine rotor, Wind Energy 16 (2013) 1-17.
 
[33]  N.N. Sorensen, S. Schreck, Computation of the National Renewable Energy Laboratory Phase-VI rotor in pitch motion during standstill, Wind Energy 15 (2012) 425-442.