Sustainable Energy
ISSN (Print): 2372-2134 ISSN (Online): 2372-2142 Website: http://www.sciepub.com/journal/rse Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
Sustainable Energy. 2014, 2(2), 39-43
DOI: 10.12691/rse-2-2-1
Open AccessArticle

Non-activated, N, S-co-doped Biochar Derived from Banana with Superior Capacitive Properties

Lei Wang1, Xiu Li1, Jianmin Ma1, , Qingzhi Wu2 and Xiaochuan Duan1

1Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, P. R. China

2State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and Biomedical Material and Engineering Center, Wuhan University of Technology, Wuhan, P. R. China

Pub. Date: February 27, 2014

Cite this paper:
Lei Wang, Xiu Li, Jianmin Ma, Qingzhi Wu and Xiaochuan Duan. Non-activated, N, S-co-doped Biochar Derived from Banana with Superior Capacitive Properties. Sustainable Energy. 2014; 2(2):39-43. doi: 10.12691/rse-2-2-1

Abstract

In this study, the non-activated N, S-co-doped biochar carbon for supercapacitors were successfully prepared from banana without any activation. In addition, our electrochemical test demonstrated that the as-prepared carbon materials exhibited a high specific capacitance and excellent cycling performance due to the co-existence of N and S.

Keywords:
biochar electrochemical properties supercapacitor carbon

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 5

References:

[1]  Zhang L.L., Zhao X.S., “Carbon-based materials as supercapacitor electrodes”, Chem. Soc. Rev., 38, 2520-2531, 2009.
 
[2]  Kim T., Jung G., Yoo S., Suh K.S., Ruoff R.S., “Activated Graphene-based carbons as supercapacitor electrodes with macro- and mesopores”, ACS Nano, 7, 6899-6905, 2013.
 
[3]  Wei W.W., Cui X.W., Chen W.X., Ivey D.G., “Manganese oxide-based materials as electrochemical supercapacitor electrodes”, Chem. Soc. Rev., 40, 1697-1721, 2011.
 
[4]  Biswas S., Drzal L.T., “Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes”, Chem. Mater., 22, 5667-5671, 2010.
 
[5]  Zhang J.T., Jiang J.W., Li H.L., Zhao X.S., “A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes”, Energy Environ. Sci., 4, 4009-4015, 2011.
 
[6]  Jha N., Ramesh P., Bekyarova E., Itkis M.E., Haddon R.C., “High energy density supercapacitor based on a hybrid carbon nanotube-reduced graphite oxide architecture”, Adv. Energy Mater., 2, 438-444, 2012.
 
[7]  Wei L., Sevilla M., Fuertes A.B., Mokaya R., Yushin G., “Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes”, Adv. Energy Mater., 1, 356-361, 2011.
 
[8]  Lee J.W., Hall A.S., Kim J.D., Mallouk T.E., “A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability”, Chem. Mater., 24, 1158-1164, 2012.
 
[9]  Lu X.H., Zheng D.Z., Zhai T., Liu Z.Q., Huang Y.Y., Xie S.L., Tong Y.X., “Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor”, Energy Environ. Sci., 4, 2915-2921, 2011.
 
[10]  Lei Z., Christov N., Zhao X.S., “Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes”, Energy Environ. Sci., 4, 1866-1873, 2011.
 
[11]  Choi N.S., Chen Z., Freunberger S.A., Ji X., Sun Y.K., Amine K., Bruce P.G., “Challenges facing lithium batteries and electrical double-layer capacitors”, Angew. Chem. Int. Ed., 51, 9994-10024, 2011.
 
[12]  Wei L., Sevilla M., Fuertes A.B., Mokaya R., Yushin G., “Polypyrrole-derived activated carbons for high-performance electrical double-layer capacitors with ionic liquid electrolyte”, Adv. Funct. Mater., 22, 827-834, 2012.
 
[13]  Miller J.R., Outlaw R.A., Holloway B.C., “Graphene double-layer capacitor with ac line-filtering performance”, Science, 329, 1637-1639, 2010.
 
[14]  Du X., Guo P., Song H.H., Chen X.C., “Graphene nanosheets as electrode material for electric double-layer capacitors”, Electrochim. Acta, 55, 4812-4819, 2010.
 
[15]  Huang C.W., Hsieh C.T., Kuo P.L., Teng H., “Electric double layer capacitors based on a composite electrode of activated mesophase pitch and carbon nanotubes”, J. Mater. Chem., 22, 7314-7322, 2012.
 
[16]  Jeong H.K., Jin M.H., Ra E.J., Sheem K.Y., Han G.H., Arepalli S., Lee Y.H., “Enhanced electric double layer capacitance of graphite oxide intercalated by poly(sodium 4-styrensulfonate) with high cycle stability”, ACS Nano, 4, 1162-1166, 2010.
 
[17]  Yang L., Fishbine B.H., Migliori A., Pratt L.R., “Molecular simulation of electric double-layer capacitors based on carbon nanotube forests”, J. Am. Chem. Soc., 131, 12373-12376, 2009.
 
[18]  Itoi H., Nishihara H., Kogure T., Kyotani T., “Three-dimensionally arrayed and mutually connected 1.2 nm-nanopores for high-performance electric double layer capacitor”, J. Am. Chem. Soc., 133, 1165-1167, 2011.
 
[19]  Lauw Y., Horne M.D., Rodopoulos T., Nelson A., Leermakers F.A., “Electrical double-layer capacitance in room temperature ionic liquids: ion-size and specific adsorption effects”, J. Phys. Chem. B, 114, 11149-11154, 2010.
 
[20]  Noked M., Okashy S., Zimrin T., Aurbach D., “Composite carbon nanotube/carbon electrodes for electrical double-layer super capacitors”, Angew. Chem. Int. Ed., 51, 1568-1571, 2012.
 
[21]  Perkin S., Crowhurst L., Niedermeyer H., Welton T., Smith A.M., Gosvami N.N., “Self-assembly in the electrical double layer of ionic liquids”, Chem. Commun., 47, 6572-6574, 2011.
 
[22]  Wang H., Xu Z., Kohandehghan A., Li Z., Cui K., Tan X., Stephenson T., King’ondu C.K., Holt C.M.B., Olsen B.C., Tak J.K., Harfield D., Anyia A.O., Mitlin D., “Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy”, ACS Nano, 7, 5131-5141, 2013.
 
[23]  Wei L., Yushin G., “Nanostructured activated carbons from natural precursors for electrical double layer capacitors”, Nano Energy, 1, 552-565, 2012.
 
[24]  Subramanian V., Luo C., Stephan A.M., Nahm K.S., Thomas S., Wei B., “Supercapacitors from activated carbon derived from banana fibers”, J. Phys. Chem. C, 111, 7527-7531, 2007.
 
[25]  Bichat M.P., Raymundo-Piñero E., Béguin F., “High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte”, Carbon, 48, 4351-4361, 2010.
 
[26]  Rufford T.E., Hulicova-Jurcakova D., Zhu Z., Lu G.Q., “Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors”, Electrochem. Commun., 10, 1594-1597, 2008.
 
[27]  Rufford T.E., Hulicova-Jurcakova D., Khosla K., Zhu Z., Lu G.Q., “Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse”, J. Power Sources, 195, 912-918, 2010.
 
[28]  Wei L., Yushin G., “Electrical double layer capacitors with sucrose derived carbon electrodes in ionic liquid electrolytes”, J. Power Sources, 196, 4072-4079, 2011.
 
[29]  Wang Q., Cao Q., Wang X., Jing B., Kuang H., Zhou L., “A high-capacity carbon prepared from renewable chicken feather biopolymer for supercapacitors”, J. Power Sources, 225 101-107, 2013.
 
[30]  Zhu H., Wang X., Yang F, Yang X., “Promising Carbons for Supercapacitors Derived from Fungi”, Adv. Mater., 23, 2745-2748, 2011.
 
[31]  Zhang L.L., Zhao X., Ji H.X., Stoller M.D., Lai L.F., Murali S., Mcdonnell S., Cleveger B., Wallace R.M., Ruoff R.S., “Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N-doped carbon”, Energy Environ. Sci., 5, 9618-9625, 2012.
 
[32]  Seredych M., Bandosz T.J., “S-doped micro/mesoporous carbon-graphene composites as efficient supercapacitors in alkaline media”, J. Mater. Chem. A, 1, 11717-11727, 2013.
 
[33]  Campos J.W., Beidaghi M., Hatzell K.B., Dennison C.R., Musci B., Presser V., Kumbur E.C., Gogotsi Y., “Investigation of carbon materials for use as a flowable electrode in electrochemical flow capacitors”, Electrochim. Acta, 98, 123-130, 2013.
 
[34]  Pognon, G., Brousse T., Demarconnay L., Bélanger D., “Performance and stability of electrochemical capacitor based on anthraquinone modified activated carbon”, J. Power Sources, 196, 4117-4122, 2011.