Sustainable Energy
ISSN (Print): 2372-2134 ISSN (Online): 2372-2142 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
Sustainable Energy. 2020, 8(1), 20-27
DOI: 10.12691/rse-8-1-4
Open AccessArticle

Evaluation of Wind Energy Potential in a Sahelian Zone: A Case Study of Ouahigouya, Burkina Faso

Drissa Boro1, , Windmanagda Sawadogo2, Hagninou Elagnon Venance Donnou3, Alfred Bayala1, Florent P. Kieno1 and Joseph Bathiebo1

1Laboratoire d’Energies Thermiques Renouvelables (L.E.T.R.E), UO1 10 BP: 13495 OUAGA 10, Burkina Faso.

2Institute of Geography, University of Augsburg, Augsburg, Germany

3Laboratoire de Physique du Rayonnement (LPR), Faculté des Sciences et Techniques (FAST), Université d’Abomey-Calavi, 01 B.P.526, Cotonou, Benin

Pub. Date: October 20, 2020

Cite this paper:
Drissa Boro, Windmanagda Sawadogo, Hagninou Elagnon Venance Donnou, Alfred Bayala, Florent P. Kieno and Joseph Bathiebo. Evaluation of Wind Energy Potential in a Sahelian Zone: A Case Study of Ouahigouya, Burkina Faso. Sustainable Energy. 2020; 8(1):20-27. doi: 10.12691/rse-8-1-4


This study investigates the characteristics of the wind energy potential in Ouahigouya, Burkina Faso. For this purpose, eleven-years data (2006-2016) of wind speed (at 10 m above ground level (AGL)) and surface temperature data from Burkina Faso meteorological agency and wind speed (50 m AGL) from the NASA were used. Based on the mean vertical profile of wind speed at monthly and annual scales, the Weibull function was used to characterize the wind speed frequency distribution and to calculate the wind power density. Major results indicate that the peaks of mean wind speeds are estimated at 3.51 m.s-1 (May) and 5.18 m.s-1 (March) for the 20 m and 50 m altitudes respectively. The mean annual wind speed at the 20 m AGL at the site is estimated at 2.87 m.s-1 while at 50 m AGL, a value of 4.33 m.s-1 is recorded. The estimated wind power density reveals that the largest amounts of energy are generally collected during the months corresponding to the dry season with peaks in March or May depending on the height. The amount of energy available at 20 m AGL varies from 32.90 W/m2 (September) to 84.97 W/m2 (May). At 50 m AGL, this value varies respectively from 68.68 W/m2 (August) to 346.47 W/m2 (March). Average annual power density amounts are estimated at 65.92 W/m2 at 20 m and 223.17 W/m2 at 50 m, respectively, for a growth rate of 70.46 %. In view of these results, the Ouahigouya site could be conducive to the installation of small and medium-sized turbines to supply rural communities with electrical energy.

wind potential Weibull distribution power density vertical profile

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Ministère des mines et de l’énergie du Burkina Faso (2013). Politique Sectorielle de l’Energie 2014-2025, Standards and Reports.
[2]  C. G. Justus et A. Mikhail, « Height variation of wind speed and wind distributions statistics », Geophys. Res. Lett., vol. 3, no 5, p. 261-264, mai 1976.
[3]  H.NFAOUI, Wind energy potential in Morocco, Renewable Energy Vol1, No1, pp1-8, 1991.
[4]  Journées Internationales de thermique, École des mines d’Albi-Carmaux, Association pour la recherche et le développement des méthodes et processus industriels (France), et Université de Cergy-Pontoise, Éd, JITH 2007. Albi: École des Mines d’Albi-Carmaux, 2007.
[6]  S. Madougou, “Étude du potentiel éolien du jet nocturne dans la zone sahélienne à partir des observations de radars profileurs de vent.”, p. 215.
[7]  M. G. Abdou et P. Ozer, “Assessment of wind energy potential in Niamey, Niger”, p. 5.
[8]  H. E. V. Donnou et al., “Vertical Profile of Wind Diurnal Cycle in the Surface Boundary Layer over the Coast of Cotonou, Benin, under a Convective Atmosphere”, Adv. Meteorol., vol. 2019, p. 1-18, avr. 2019.
[9]  M. H. Soulouknga, S. O. Oyedepo, S. Y. Doka, et T. C. Kofane, “Assessment of Wind Energy Potential in the Sudanese Zone in Chad”, Energy Power Eng., vol. 09, no 07, p. 386-402, 2017.
[10]  D. H. Didane, N. Rosly, M. F. Zulkafli, et S. S. Shamsudin, “Evaluation of Wind Energy Potential as a Power Generation Source in Chad”, Int. J. Rotating Mach., vol. 2017, p. 1-10, 2017.
[11]  B. O. Bilal, M. Ndongo, C. M. F. Kebe, V. Sambou, et P. A. Ndiaye, “Feasibility Study of Wind Energy Potential for Electricity Generation in the Northwestern Coast of Senegal”, Energy Procedia, vol. 36, p. 11191129, 2013.
[12]  M. Landry, Y. Ouedraogo, et Y. Gagnon, “ATLAS ÉOLIEN DU BURKINA FASO”, p. 18.
[13]  S. Ouedraogo, A. S. A. Ajavon, A. A. Salami, M. K. Kodjo, et K.-S. Bédja, “Evaluation of wind potential in the sahelian area: case of three sites in Burkina Faso”, vol. 6, p. 11.
[14]  G. Gualtieri et S. Secci, “Methods to extrapolate wind resource to the turbine hub height based on power law: A 1-h wind speed vs. Weibull distribution extrapolation comparison”, Renew. Energy, vol. 43, p. 183200, juill. 2012.
[15]  G. Gualtieri et S. Secci, “Methods to extrapolate wind resource to the turbine hub height based on power law: A 1-h wind speed vs. Weibull distribution extrapolation comparison”, Renew. Energy, vol. 43, p. 183200, juill. 2012.
[16]  D. Boro, H. E. Venance Donnou, I. Kossi, N. Bado, F. P. Kieno, et J. Bathiebo, “Vertical Profile of Wind Speed in the Atmospheric Boundary Layer and Assessment of Wind Resource on the Bobo Dioulasso Site in Burkina Faso”, Smart Grid Renew. Energy, vol. 10, no 11, p. 257-278, 2019.
[18]  A. S. Monin et A. M. Obukhov, “Basic laws of turbulent mixing in the surface layer of the atmosphere”, p. 30.
[19]  F. Bañuelos-Ruedas, C. Angeles-Camacho, et S. Rios-Marcuello, “Analysis and validation of the methodology used in the extrapolation of wind speed data at different heights”, Renew. Sustain. Energy Rev., vol. 14, no 8, p. 2383-2391, oct. 2010.
[20]  G. Gualtieri, “A comprehensive review on wind resource extrapolation models applied in wind energy”, Renew. Sustain. Energy Rev., vol. 102, p. 215-233, mars 2019.
[21]  G. Gualtieri et S. Secci, “Extrapolating wind speed time series vs. Weibull distribution to assess wind resource to the turbine hub height: A case study on coastal location in Southern Italy”, Renew. Energy, vol. 62, p. 164-176, févr. 2014.
[22]  V. Rasouli, S. Allahkaram, et M. R. Tavakoli, “Application of adaptability coefficient in power production evaluation of a wind farm”, in 2015 Modern Electric Power Systems (MEPS), Wroclaw, Poland, juill. 2015, p. 1-6.
[23]  I. Nygaard et al., “Feasibility of wind power integration in weak grids in non-coastal areas of sub-saharan Africa: the case of Mali”, AIMS Energy, vol. 5, no 3, p. 557-584, 2017.
[24]  D. Elliott, “Dominican Republic Wind Energy Resource Atlas Development”, p. 7.