You are here:

Physics and Materials Chemistry

ISSN (Print): 2372-7098

ISSN (Online): 2372-7101


Content: Volume 2, Issue 1


Physico-Chemical and Trace Element Levels in Water from Dams, Rivers and Boreholes in Gombe State, Nigeria

1Department of Chemistry, FCE(T), Gombe, Nigeria

2Chemistry programme, Abubakar Tafawa Balewa University, Bauchi, Nigeria

3Biochemistry Department, Gombe State University, Gombe, Nigeria

Physics and Materials Chemistry. 2014, 2(1), 25-29
DOI: 10.12691/pmc-2-1-5
Copyright © 2014 Science and Education Publishing

Cite this paper:
Maigari A. U., Ekanem E. O., Garba I. H., Maigari F.U.. Physico-Chemical and Trace Element Levels in Water from Dams, Rivers and Boreholes in Gombe State, Nigeria. Physics and Materials Chemistry. 2014; 2(1):25-29. doi: 10.12691/pmc-2-1-5.

Correspondence to: Maigari  A. U., Department of Chemistry, FCE(T), Gombe, Nigeria. Email:


The physico-chemical and trace element levels of water samples from Gombe Abba river, Dadinkowa dam, Balanga dam and boreholes from Kwadon used for drinking and irrigation in farms were analysed using complexometric method of analysis. In all the elements sampled, Nickel had the lowest concentration in all the sites sampled with a mean of 0.003±0.00 mg/l in Dadinkowa and Gombe Abba and 0.002±0.00 mg/l for Kwadon and Balanga dam.Copper had the highest concentrations in all the areas sampled with a mean of 0.61±0.32mg/l in Dadinkowa dam, 0.49±0.04mg/l in Gombe Abba river, 0.39±0.01mg/l for Kwadon and 0.30±0.01mg/l for Balanga dams respectively. The levels for the trace elements determined are in the order Cu>Pb>Cd>Ni for Dadinkowa and Gombe Abba while for Kwadon the order is Cu>Ni>Pb=Cd. For Balanga dam, the order is Cu>Cd>Ni>Pb. Statistical analysis using Kruskal-wallis showed no significant difference for all the elements sampled irrespective of location.



[1]  Salem, H.M., Eweida, E.A., and Faraz A. (2000). Heavy metals in drinking water and their environmental impact on human health. ICEHM Cairo University, Egypt, September, 2000, page 542-556.
[2]  Jennings,G., D.; Sneed, R., E.; Clair, M., B., St., (1996): Metals in drinking water. Publishedby: North Carolina Cooperative Extension service Publication no.:AG-473-1.Electronic version 3/1996.
[3]  USGAO, (2000): Health Effect of lead in drinking water. U.S. General Accounting Officereports 2000.
[4]  Webb, M. (ed.) (1979a): The geochemistry, Biochemistry and Biology of Cadmium”.Elsevier/Noyth Holland Biomedical Press, Amesterdam.
[5]  Stowe, H., D., Wilson, M., and Goyer, R., A., (1972): Clinical and morphologic effects of oralcadmium toxicity in rabbits. In Arch-Pathol.,Nov., 94 (5): 389-405.
Show More References
6]  Sakata, S., I., Wami, K., Enoki, Y., Kohzuki, H., Shimizu, M., and Moriyama, T., (1988):Effect of Cadmium in vitro and in vivo erythropoiesis: erythroid progenitor cells(CFU-E) and erythropoietin in cadmium induced iron deficiency anemia.
7]  Madsen, H., Poultsen, L., and Grandjean, P., (1990): Risk of high copper content in drinkingwater. Ugeskr. Laeger. Jun.18, 152 (25): 1806-90041-5782.
8]  Bent,S., and Bohm, K., (1995): Copper induced liver cirrhosis in a 13-month-old boy.Gesundheitswesen. V., 57 (10): 667-9.
9]  Ambrose,A.M., D.S. Larson, J.R. Borzelleca and G.R. Hennigar, Jr., (1976): Long-termtoxicologic assessment of nickel in rats and dogs. J. Food Sci. Technol. 13: 181-187.
10]  Motsara, M.R. and Roy, R.N. (2008). Guide to laboratory establishment for plant nutrient analysis. Food and agricultural organisation of the United Nations FAO Fertilizer and Plant Nutrition Bulletin. Rome.
11]  Menham, J., Denny, R.C., Barnes, J.D., and Thomas, M.(2007): Vogel’ s textbook of Quantitative Chemical Analysis. 6th Edition, Pearson Education Ltd UK p330.
12]  World Health Organisation (2004): Guidelines for drinking water Quality. 3rd Edition (3): 23-56. WHO Publications, Geneva, Switzerland.
Show Less References


Borosilicate Glass Containing Bismuth and Zinc Oxides as a Hot Cell Material for Gamma-Ray Shielding

1Physics Department, Faculty of Science, Al-Azhar University, Girls Branch, Nasr City, Cairo, Egypt

22Physics Department, Faculty of Science, Al-Azhar University, boys Branch, Nasr City, Cairo, Egypt

Physics and Materials Chemistry. 2014, 2(1), 20-24
DOI: 10.12691/pmc-2-1-4
Copyright © 2014 Science and Education Publishing

Cite this paper:
H. A. Saudi, H. A. Sallam, K. Abdullah. Borosilicate Glass Containing Bismuth and Zinc Oxides as a Hot Cell Material for Gamma-Ray Shielding. Physics and Materials Chemistry. 2014; 2(1):20-24. doi: 10.12691/pmc-2-1-4.

Correspondence to: H.  A. Saudi, Physics Department, Faculty of Science, Al-Azhar University, Girls Branch, Nasr City, Cairo, Egypt. Email:


Gamma-ray attenuation coefficients (the half value layer parameters, gamma – ray shielding properties) for the x ZnO - (5−x) Bi2O3 -10 B2O3 -40 SiO2 (x = 0, 5, 10, 15 and 20) at 662, 1173 and 1332 keV photon energies have been determined experimentally, using a narrow beam transmission method, as well as theoretically using the ‘mixture rule’ and the ‘XCOM’ computer software. The molar volume and FTIR investigations have been used to study the structural properties of the glass system. Optical, UV-visible, absorption measurements were performed also to investigate the transmittance aimed to investigate the performance of the glass system for using as hot cells for shielding windows in nuclear technology.



[1]  Sukhpal Prehar, Min Zi, Delvac Oceandy, Adam Pickard, Elizabeth Cartwright, Ludwig Neyses, Journal of Molecular and Cellular Cardiology, Volume 44, Issue 4, April 2008, Page 755.
[2]  Murat Kurudirek, Yüksel Özdemir, Önder Şimşek, Rıdvan Durak, Journal of Nuclear Materials, Volume 407, Issue 2, 15 December 2010, Pages 110-115.
[3]  S.R. Manohara, S.M. Hanagodimath, L. Gerward, Journal of Nuclear Materials, Volume 393, Issue 3, 15 September 2009, Pages 465-472.
[4]  H.A. Saudi, A.G. Mostafa, N. Sheta, S.U. El Kameesy, H.A. Sallam, Physica B: Condensed Matter, Volume 406, Issue 21, 1 November 2011, Pages 4001-4006.
[5]  Y.I. Alivov, D.C. Look, B.M. Ataev, M.V. Chukichev, V.V. Mamedov, V.I. Zinenko, Y.A. Agafonov, A.N. Pustovit, Solid State Electron., 48 (12) (2004), p. 2343.
Show More References
6]  J.H. Hubbell, S.M. Seltzer. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 213, January 2004, Pages 1-9.
7]  Pawan P. Singh, John H. Cushman, Dirk E. Maier, Chemical Engineering Science, Volume 58, Issue 11, June 2003, Pages 2409-2419.
8]  F.G. Bianchini, L.D. Riu, G. Gagliardi, M. Gulielmi, C.G. Pantano, Glastech. Ber., 64 (8) (1991), pp. 205–217.
9]  Tom O'Haver, Intro to Signal Processing-Deconvolution, University of Maryland at College Park, Retrieved, 2008.
10]  Domingos De Sousa Meneses, Myriam Eckes, Leire del Campo, Cristiane N. Santos, Yann Vaills, Patrick Echegut, Vibrational Spectroscopy, Volume 65, March 2013, Pages 50-57.
11]  Yufeng Chen, Gensheng Yu, Fei Li, Junchao Wei, Journal of Non-Crystalline Solids, Volume 358, Issue 15, 1 August 2012, Pages 1772-1777.
12]  G. Chryssikos, L. Liu, C. Varsamis, E. Kamitsos, J. Non-Cryst. Solids, 235 (1998), p. 761.
13]  Degang Deng, Hongping Ma, Shiqing Xu, Qian Wang, Lihui Huang, Shilong Zhao, Huanping Wang, Chenxia Li, Journal of Non-Crystalline Solids, Volume 357, Issue 5, 1 March 2011, Pages 1426-1429.
14]  M. Subhadra, P. Kistaiah, Vibrational Spectroscopy, Volume 62, September 2012, Pages 23-27.
15]  Nam Jin Kim, Young Hoon La, Sang Hyeok Im, Won-Tack Han, and Bong Ki Ryu, Electronic Materials Letters, Vol. 5, No. 4 (2009), pp. 209-212.
Show Less References


DFT-Calculations of Thermodynamic Parameters of ZnTe, ZnSe, ZnS Crystals

1Department of Physics and Chemistry of Solid State

2Physics and Chemistry Institute, SHEE “Vasyl Stefanik Precarpathian National University”, Ivano-Frankivsk, Ukraine

3Department of Inorganic Chemistry, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine

Physics and Materials Chemistry. 2014, 2(1), 14-19
DOI: 10.12691/pmc-2-1-3
Copyright © 2014 Science and Education Publishing

Cite this paper:
T.O. Parashchuk, N.D. Freik, P.M. Fochuk. DFT-Calculations of Thermodynamic Parameters of ZnTe, ZnSe, ZnS Crystals. Physics and Materials Chemistry. 2014; 2(1):14-19. doi: 10.12691/pmc-2-1-3.

Correspondence to: T.O.  Parashchuk, Department of Physics and Chemistry of Solid State. Email:


Based on the analysis of the crystal and electronic structure of semiconductors ZnX (X=Te,Se,S) in cubic phase there have been built the cluster model for calculation of the geometric and thermodynamic parameters. The method of consideration of the boundary conditions for the proposed cluster models has been presented. Based on the results of ab initio quantum-chemical calculations of the crystal structure of molecular clusters the temperature dependence of formation energy ∆E, formation enthalpy ∆H, Gibbs free energy ∆G, entropy ∆S, specific heat capacity at constant volume CV have been defined. Computer calculations of the thermodynamic parameters were carried out with the help of density functional theory (DFT), using hybrid valence base set B3LYP. Also, in the work have been derived analytical expressions of temperature dependences of the presented thermodynamic parameters, which have been approximated by a quantum-chemical calculation data using mathematical package Maple 14.



[1]  Tan Jia-Jin, Ji Guang-Fu, Chen Xiang-Rong, Gou Qing-Quan, “Phase Transition and Phonon Spectrum of Zinc-Blende Structure ZnX (X=S, Se,Te)” Commun. Theor. Phys., 53, 1160, 2010.
[2]  Gangadharan, R., Jayalakshmi, V., Kalaiselvi, J., Mohan, S., Murugan, R., Palanivel, B. “Electronic and structural properties of zinc chalcogenides ZnX (X=S, Se, Te)”, Journ. of Alloys Compounds, 359, 22-26, 2003.
[3]  Qteish, A., Munoz. A. “Stability and structural properties of ZnS and ZnSe under high pressure”, Physica Status Solidi (b), 223, 417-423, 2001.
[4]  Malloci, G., Chiodo, L. Rubio, A., Mattoni, A. “Structural and Optoelectronic Properties of Unsaturated ZnO and ZnS Nanoclusters”. Journ. of Phys.Chem. 116, 8741-8746, 2012.
[5]  Ahiska,R., Freik, D., Parashchuk, T., Gorichok I. Quantum chemical calculations of the polymorphic phase transition temperatures of ZnS, ZnSe, and ZnTe crystals. Turkish Journ. of Physics. (In print. Accepted: 25.10.2013).
Show More References
6]  Granovsky, PC GAMESS version 7.0,
7]  David C. Young. Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems. John Wiley & Sons, Inc., New York 2001.
8]  Hu Cui-E. Zeng Zhao-Yi, Cheng Yan, Chen Xiang-Rong, and Cai Ling-Cang. “First-principles calculations for electronic, optical and thermodynamic properties of ZnS”. Chiness Physics B, 17(10), 3867-3874, 2008.
9]  E.C. Hu, L.L. Sun, Y.Z. Zeng, R.X. Chen, “Pressure temperature induced phase transition of ZnS from firsr-principles calculations, Chinese Physics Letters”, 25, 675-678. 2008.
10]  Wang, S. Q. First-principles study of the anisotropic thermal expansion of wurtzite ZnS. Applied Physics Letters, 88(6), 061902-061902-3, 2006.
11]  William M Haynes, “CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data”, Boca Raton, Fla. : CRC Press 2010.
12]  Gavrichev, K.S., Sharpataya, G.A., Guskov, V.N., Greenberg, J.H., Feltgen, T., Fiederle, M., Benz, K.W. “High-temperature heat capacity and thermodynamic functions of zinc telluride” Elsevier. Thermochimica Acta, 381, 133, 2002.
13]  Gorbachuk, N.P., Bolgar, A.S., Sidorko, V.R., Goncharuk, L. V. “Heat Capacity and Enthalpy of Bi2Si3 and Bi2Te3 in the Temperature Range 58-1012 K” Powder Metallurgy and Metal Ceramics 43, 5-6, 284-290, 2004.
14]  Brooks, L.S. “The Vapor Pressures of Tellurium and Selenium”, J. Am. Chem. Soc. 74, 227, 1952.
15]  Christensen, N. E., Christensen, O. B. “Electronic structure of ZnTe and CdTe under pressure” Phys. Rev. B. 33, 4739, 1986.
16]  Nelmes, R.J., McMahon, M.I., Wright, N.G., Allan, D.R. “Structural studies of II–VI semiconductors at high pressure” J. Phys. Chem. Solids, 56, 1995.
17]  Abrikosov, N.H. Semiconductor compounds, their preparation and properties, Nauka, Moskov, 1970.
18]  C.S. Dinesh, S. Subodh, Y.K. Vijay, Y.K. Sharma, “Preparation and Optical Properties of ZnTe/ZnTe:Cr Bilayer Thin Films”, Intern. Journ. of Recent Research and Review, II,16-20, 2012.
Show Less References


α- Zirconium Titanium Phosphates - Fibrous Cerium Phosphate Composite Membranes and Their 1,10- Phenanthroline Cu(II) Pillared Materials

1Department of Chemistry, Faculty of Science, Tripoli University

2Department of Chemistry, Sebha University, Sebha

3Industrial Research Centre, Tripoli, Libya

Physics and Materials Chemistry. 2014, 2(1), 7-13
DOI: 10.12691/pmc-2-1-2
Copyright © 2014 Science and Education Publishing

Cite this paper:
Sadek K.Shakshooki, Mohamed B.Hassan, Wafaa K.EL-Nowely, Abdulhafiz El-Belazi, Sumaia M. Abed, Mona.M. Al-Said. α- Zirconium Titanium Phosphates - Fibrous Cerium Phosphate Composite Membranes and Their 1,10- Phenanthroline Cu(II) Pillared Materials. Physics and Materials Chemistry. 2014; 2(1):7-13. doi: 10.12691/pmc-2-1-2.

Correspondence to: Sadek  K.Shakshooki, Department of Chemistry, Faculty of Science, Tripoli University. Email:


Nanosized fibrous cerium phosphate, Ce(HPO4)2.2.9H2O(nCePf), and α- Zirconium -Titanium Phosphates, ZrxTi1-x(HPO4)2.H2O(α-ZTP), where x = 0.9, 0.8, 0. 67, 0.34, were synthesized. Novel composite membranes [ZrxTi(1-x)(HPO4)2]0.25 [Ce(HPO4)2]0.75 .3.3H2O were prepared. Reactions of the resulting composite membranes with 1,10-phenanthroline in ethanol, followed by the addition of 0.1M CuCl2.2H2O, in (1:1) ethanol: aqueous solution, lead to the formation of novel pillared materials: [(H1.16) Zr0.9Ti0.1 (PO4)2]0.25[(H1.16 ) Ce (PO4)2]0.75(PhenCu), [(H1.5)Zr0.8Ti0.2 (PO4)2]0.25 [( H1.5)Ce (PO4)2] 0.75 (Phen Cu), [(H0.3 ) Zr0.67Ti (PO4)2] 0.25 [(H 0.3) Ce (PO4)2]0.75.(Phen Cu)0.85. 4H2O, [(H1.6)Zr0.34Ti0.66 (PO4)2]0.25 [(H1.6) Ce (PO4)2]0.75.(PhenCu)0.2. 2.22 H2O, respectively. They were characterized by chemical, X-ray diffraction (XRD) and thermal analysis (TGA), accordingly were formulated. XRD patterns of the composite materials retain (d) spacing reflection of α-ZTP and nCePf, where d001 = 7.58 Å and 11.38 Å, respectively, The resulting composites are thermally stable and can be considered as novel ecofriendly solid acid catalysts, Ionex changers and ionc conductance materials.



[1]  Shakshooki, S.K., Naqvi., N., Kowaleczyk, J.K., Khalil, S., Rais, M. and Tarish, F.: Effect of composition of ion exchange properties of amorphous, zirconium- titanium phosphates, Reactive Polymer, 7, 221-226, 1988.
[2]  Clearfield, A.: Inorganic Ion Exchange Materials, CRC Press, Bocca Raton, FL.US., 1982, pp5-77.
[3]  Clearfield, A. and Styne, J. A.: The preparation of crystalline zirconium phosphate and some observation on its ion exchange behavior, J. Inorg. Nucl. Chem., 26,117, 1964.
[4]  Shakshooki, S.K., Azzabi,O.H., Khalil, S., Kowalczyk, J. and Naqvi, N.: Crystalline mixed hafnium-titanium phosphates, Reactive Polymers, 17, 191-196, 1988.
[5]  Clearfield, A.: Ion exchange and adsorption in layered phosphates, Mater, Chem. and Phys., 35, 257-263, 1993.
Show More References
6]  Alberti, G., Bernasconi, M.G., Costantino, U. and Gill, G.S.: Ion exchange of trivalent cations on zirconium phosphate with large interlayer distance, J. Chromatog., 132, 177, 1977.
7]  Alberti, G. and Torracca, E.: Synthesis of crystalline zirconium and titanium phosphate by direct precipitation, J. Inorg. Nucl. Chem., 30, 173, 1968.
8]  Costantino,U.: Intercalation of alkanols and glycols into zirconnium (IV) hydrogenphosphate monohydrate, J.Chem.Soc. Dalton Trans., 402-406, 1979.
9]  Vecchio, S., Di-Rocco, R. and Ferragina,C.: Intercalation compounds of γ-zirconium and γ-titanium phosphates 1,10-phenantroline copper complex materials, Themochimica acta, 453, 105-112, 2007.
10]  Osaka, Y. and Nakagawa,T., Edt(r): Membrane science and technology, Marcel Dekker Inc N.Y., 1992.
11]  Palacio, L., Ho, C., Paradanos, P., Calvo, J.I., Kherif, G., Larbot, A. and Hernandez, A.: Structure and charges of composite inorganic microfiltration membranes, J.Coll. and Surf., 138, 291-299, 1998.
12]  Strathmann, H., Giorno, L. and Drioli, E.,Edt(r) : An introduction to membrane science and technology, Consiglio Nationale Della Ricerche, Roma, 2006.
13]  Oyama. S.T. and Williams.S.M..S, Edt(r): Inorganic polymeric and composite membranes, Elsevier vol.14, 2011.
14]  Lin, Y.S. and Burggraaf, A.J.: Preparation and characterization of high-temperatur thermally stable alumina composite membrane, J.Am. Ceramic Soc., 140, 361-364, 1991.
15]  Lin, Y.S., de Vries, K.J., Brinkman, H.W. and A.J. Burggraaf. A .J: Oxygen semipermeable solid oxide membrane composites prepared by electrochemical vapour deposition, J. Membrane Science, 66, 211-226, 1992.
16]  Wang, H.B. and Lin,Y.S.,: Effects of water vapour on gas permeation and separation properties of MFI zeolite membranes at high temperatures, AlChEJ., 58, 153162, 2012.
17]  Zhang,S.S, Xu.K, Jow. T.R. An inorganic composite membrane as the separator of Li-ion batteries, J. of Power Sources, 140, 361–364, 2005,
18]  Shakshooki, S.K., Naqvi N., Kowalezyk J.K., Khalil S., Rais M. and Tarish.F.A. J. Reactive Polymer, 7, 221, 1988.
19]  Shakshooki, S.K., El-Azzabi, O.H., Turki, F.M., El-Akari, F.A., Abodlal, R.J. and El-Tarhuni, S.R.: FT-IR and thermal behavior of θ-type zirconium- and hafnium phosphates and their pellicular membranes, Egypt J. of Anal. Chem., 21, 45-56, 2012.
20]  Shakshooki, S.K., El-Azzabi,O.H and Suliman,Y.A.: FT-IR spectra and thermal behavior of α-vanadyl phosphate hemihydrate and its intercalated Mn2+, Ni2+ and Zn2+ metal ions, The Libyan J. of Sci., 17, 23-31, 2013.
Show Less References


Facile Synthesis of Poly (vinylalcohol)/Fibrous Cerium Phosphate Nanocomposite Membranes

1Department of Chemistry, Faculty of Science, Tripoli University, Tripoli, Libya

Physics and Materials Chemistry. 2014, 2(1), 1-6
DOI: 10.12691/pmc-2-1-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
S.K. Shakshooki, A.A. Elejmi, A.M. Hamassi, F.A. El-Akari, N.A. Masoud. Facile Synthesis of Poly (vinylalcohol)/Fibrous Cerium Phosphate Nanocomposite Membranes. Physics and Materials Chemistry. 2014; 2(1):1-6. doi: 10.12691/pmc-2-1-1.

Correspondence to: S.K.  Shakshooki, Department of Chemistry, Faculty of Science, Tripoli University, Tripoli, Libya. Email:


Nanosized fibrous cerium phosphates, Ce(HPO4)2.2.9H2O (nCePf), was prepared and characterized. Poly (vinylalcohol)/fibrous cerium phosphate nanocomposite membranes of different weight percentages (2.5,5,10 and 20 wt %) were synthesized. and found to be transparent flexible thin films. They were characterized by chemical, XRD, TGA analysis, and transmission electron microscopy (TEM). TEM images of PVA/nCePf nanocomposites show fibrous cerium phosphate in the nanometer scale, in the range of 12-15 nm, and was dispersed in the PVA matrix. The composite materials show to have mechanical and thermal stability properties superior to that of the original polymer. The exchange capacities of composite membranes were investigated and found to be equivalent to summation of ion exchange capacities of PVA and the inorganic filler (nCePf) wt % loading.



[1]  , A., Inorganic Ion Exchange Materials, Bocca Raton, CRC Press, FL. USA (1982).
[2]  Shakshooki . S.K, Naqvi .N, Kowaleczyk .J.K, Khalil. S, Rais. M and Tarish. F, Effect of composition of ion exchange properties of amorphous zirconium- titanium phosphates, Reactive Polymer, 7 (1988) 221.
[3]  Salvado, M.A., Pertierra,P., Tropajo, C. and Garcia, G.R., Crystal structure of cerium(iv) bishydrogen phosphate derivative, J.Am.Chem.Soc, 129 (2007) 10970.
[4]  Alberti, G. and Costantino, U, Recent progress in the field of synthetic inorganic exchanger having a layered and fibrous structure, J. Chromatogr., 102 (1974) 5.
[5]  Romano,R. and Alves,O.S., Fibrous cerium(iv) phosphate host of weak and strong Lewis bases, 51, (2005) 211.
Show More References
6]  Hayashi,H., Ebina,T., Nagasi,T., Onodera,Y. And Iwasaki,T., Sorption of trivalent meta ion exchanger on fibrous cerium(iv) hydrogen phosphate, J. Chem. Soc. Japan, (1997) 558.
7]  Metwally, S.S., El-Gammal, B., Ali, H.F. and Abo-EL-Enein, S.A., Removal and separation of some radionuclides by poly-acrylamide based Ce(iv) phosphate, Separation Sci. and Tech., 46 (2011) 11.
8]  Parangi, T., Wani, P. and Chudasama, U., Synthesis, characterization and application of cerium phosphate, Desalination and Water Treatment, 38 (2012) 126.
9]  , A., Inorganic Ion Exchange Materials, Bocca Raton, CRC Press, FL. USA (1988).
10]  Arjona, A.M., Rodrigouez, A.G., Bueno, F.R, Sanchez, E.V. and Conejo, G.L., On the retention of n-butylamine by crystalline and fibrous Ce(iv) phosphate, J.Chem.Tech. Biotechnol, 42 (1988) 83.
11]  Casciola, M., Costantino, U. and D´amico, S., ac Conductivity of cerium(iv) phosphate in hydrogen form, Solid State Ionics, 28 (1988) 617.
12]  Yang, Y., Liu, C. and Wen, H., Preparation and properties of polyvinyl alcohol/exfoliated α-zirconium phosphate, Polym. Test, 28, (2009) 185.
13]  Nagarale, R.K., Shin, W and Singh, P.K., Progress in ionic organic-inorganic composite membranes for fuel cell application, Polym. Chem., 1 (2010) 388.
14]  S.K.Shakshooki, S.K,Elejmi, A.A.,Khalfulla, A.M. and. Elfituri.S.S., Int. Conf. on Mater. Imperative, pp 49-70 (CD).Cairo, Egypt, 29/11-2/12, 2010.
15]  Feng, Y., He, W., Zhang, X., Jia, X. and Zhao, H., The preparation of nanoparticle zirconium phosphate, Mater.Letters, 61 (2007) 3258.
16]  Bao, C., Gua, Y., Song, L., Lu, H., Yuan, B., and Hu, Y., Facile synthesis of poly (vinyl alcohol) /α-titanium phosphate nanocomposite with markedly enhanced properties, Ind. Eng. Chem. Res., 50 (2010) 11109.
17]  Yang, C. C., Chiu, S. J., Chien, W. C., Development of alkaline direct methanol fuel cells based on crosslinked PVA polymer membranes. J. Power Sources, 162 (2006) 21.
18]  Helen, M., Viswanathan, B., Murthy, S. S., Poly (vinyl alcohol)-polyacrylamide blends with cesium salts of heteropolyacid as a polymer electrolyte for direct methanol fuel cell applications., J. Appl. Polym. Sci., 116 (2010) 3437.
19]  Paralikara, S. A., Simonsen, J., Lombardi, J., Poly (vinyl alcohol) /cellulose nanocrystal barrier membranes. J. Membr. Sci., 320 (2008),248.
20]  Sullad, A. G., Manjeshwar, L. S., Aminabhavi, T. M., Polymeric blend micro spheres for controlled release of theophylline. J. Appl. Polym. Sci., 117 (2010) 1361.
21]  Wang, X.L. and Wang, Y.Z., Synthesis and properties of thermophylic PVA-grafted lactic acid copolymer, Ind.Eng.Chem.Res., 48 (2009) 788.
22]  Spalids, A.A., Katsaros,F.K., Romanos, G.E., Kakizis, N.K., and Kanellopoulos,,N.K., preparation and characterization of novel PVA zoster flakes composites for packaging applications, Composites Bi.Eng., 48 (2007) 398.
23]  Soundrajah, H.J., Karumartre, B.S.B., and Rajapkse, R.M.G., Thermalproerties of PVA montmorillonite nanocomposites, J. Compos. Mater., 44 (2010) 303.
24]  Liang, J.J., Huang,Y., Zhang,L., Wang,Y., Ma,Y.F., Guo, T.Y.and Chen.Y.C.,Molecular level dispersion of grapheme into polyvinylalcohol, Adv.Funct. Mater., 19 (2009) 2297.
25]  Sulvagione,H.J., Martinez, G., and Gmez, M.,A., Synthesis PVA/reduced graphite oxide with improved thermal and electrical properties, J.Mater. Chem., 19 (2009) 5027.
26]  Shakshooki, S.K., El-Akari, F.A., Al-fituri, S.M. and Elfituri, S.S., Fibrous cerium(iv) hydrogenphosphate membrane self supported benzimidazole polymerization agent, DOi:10.4026 Sci net., Adv. Mater. Res., 856 (2014) 3-9.
Show Less References

Someone is Doing on SciEP

Statistics of This Journal

Article Downloads: 32884

Article Views: 96007

Sponsors, Associates, and Links