Physics and Materials Chemistry
ISSN (Print): 2372-7098 ISSN (Online): 2372-7101 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
Physics and Materials Chemistry. 2016, 4(1), 10-14
DOI: 10.12691/pmc-4-1-3
Open AccessArticle

Variation of Excess Minority Carriers Density in Function to Silicon Solar Cell Paremeters Involving Excitons Effects

Mamadou NIANE1, , Modou FAYE1, Saliou NDIAYE1, Modou PILOR1, Ousmane NGOM1, Moulaye DIAGNE1, Nacire MBINGUE1, Omar. A. NIASSE1 and Bassirou BA1

1Laboratoire de Semi-conducteurs et d’Energie Solaire, Département de Physique, Faculté des Sciences et Techniques (UCAD-SENEGAL)

Pub. Date: December 28, 2016

Cite this paper:
Mamadou NIANE, Modou FAYE, Saliou NDIAYE, Modou PILOR, Ousmane NGOM, Moulaye DIAGNE, Nacire MBINGUE, Omar. A. NIASSE and Bassirou BA. Variation of Excess Minority Carriers Density in Function to Silicon Solar Cell Paremeters Involving Excitons Effects. Physics and Materials Chemistry. 2016; 4(1):10-14. doi: 10.12691/pmc-4-1-3


In this work, we have studied the variations of excess minority carriers density in the base in function to some parameters to the silicon solar cell taking into account excitons effects. To do this, we have taken the expressions of excess electrons density in the base obtained by resolution of the differential equations of charge transport in static condition, the study of here variations are done in function to some cell parameters such as the binding coefficient between electrons and excitons and the base thickness in strong coupling. The profile of the excess electron variation in function to the base thickness for a strong coupling shows that, at the base junction, he is independent to the binding coefficient. This invariance is done to the intervention of the electric field that prevails in the depletion region which dissociates almost all excitons arriving at the junction. In depth, a strong coupling coefficient decreases the excess minority carriers density due to recombination that occur with excitons. The excess electrons density variation enabled us to know that when the coupling is strong, the doping level decreases the electrons density caused by the increase of recombination region due to the introduction of many impurities.

excess minority carriers density exciton density doping level binding coefficient base thickness

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  R. Corkish, Daniel S-p. Chan and M. A. Green, “excitons in Silicon Diodes and Solar Cells - A Three Particle Theory”, Journal of Applied Physics, vol. 79, pp. 195-203, 1996
[2]  Mamadou Niane, Omar. A. Niasse, Moulaye Diagne, Nacire Mbengue, Bassirou Ba, “Laplace transform calculation of dark saturation current in silicon solar cell involving exciton effects”, INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY, vol. 4(3), pp. 279-285, mars 2015.
[3]  M. BALKANSKI « état actuel du problème de l’exciton » JOURNAL DE PHYSIQUE ET LE RADIUM TOME 19, FÉVRIER 1958, page 170.
[4]  J. Barrau, M. Heckmann, M. Brousseau, Determination experimentale du coefficient de formation d'excitons dans le siliciumJournal of Physics and Chemistry of Solids, 34, 3, 1973, 381-385
[5]  R.S. Knox, Theory of Excitons, Academic Press, New York, 1963.
[6]  Arthur J. Nozik, Multiple exciton generation in semiconductor quantum dots, Chemical Physics Letters 457 (2008) 3-11.
[7]  EADES W. D and SWANSON R.M, Calculation of surface generation and recombination velocities at the Si-SiO2 interface, Journal of Applied Physics, vol. 58, 1995, 4267 p.
[8]  I. Zerbo, F. I. Barro, B. Mbow, A. Diao, F. Zougmore, G. Sissokho “theoretical study of bifacial silicon solar cell under frequency modulated while light: Determination of recombination parameters. 19thEuropean Photovoltaique solar conference and exhibition June 2004, Paris France.
[9]  Sproul A. B., Dimensionless solution of the equation describing the effect of surface ecombination on carrier decay in semiconductors, J. Appl. Phys., vol.76, Issue 5, 1994, pp. 2851-2854.
[10]  A. Green “Concentration and Minority-Carrier Mobility of Silicon from 77-300K”, Journal of Applied Physics, Vol. 73, pp. 1214-1225, 1993.
[11]  A. Green and J. Shewchun, “Minority Carrier Effects Upon the Small Signal and Steady-State Properties of Schottky Diodes”, Solid-State Electronics, pp. 1141-1150, 1973.
[12]  SHOCKLEY W, READ W.T.Jr. Statistics of the Recombinations of Holes and Electron. Physical. Review, vol. 87, 1952, pp. 835-842.
[13]  Halls, Pichler, Friend, Moratti, Holmes« Exciton dissociation at a PPV/ C60 heterojunction » Synthetic Metals 77 (1996) 277-280.
[14]  HALL R. N. Electron-Hole Recombination in Germanium, Physical Review, vol. 87 1952, 387 p.
[15]  Saliou NDIAYE, Mamadou Niane, Nacire Mbengue,Moulaye Diagne, Omar. A. Niasse, Bassirou Ba, effects of temperature on the short circuit current of a silicon solar cell while taking into account the excitons”, INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY, vol 4(3). pp. 441-444, mars 2015.
[16]  Luque A., Martı A., Eds., Next Generation PhotoVoltaics: High Efficiency through Full Spectrum Utilization; Institute of Physics, Bristol, UK, 2003.
[17]  Murphy, J. E.; Beard, M. C.; Norman, A. G.; Ahrenkiel, S. P.; Johnson, J. C.; Yu, P.; Mic´ic´, O. I.; Ellingson, R. J.; Nozik, A. J. J. Am. Chem. Soc. 2006, 128, 3241.
[18]  EADES W. D and SWANSON R.M, Calculation of surface generation and recombination velocities at the Si-SiO2 interface, Journal of Applied Physics, vol. 58, 1995, 4267 p.
[19]  A.G. Aberle, S.J. Robinson, A. Wang, J. Zhao, S.R. Wenham and M.A. Green, “High Efficiency Silicon Solar Cells: Fill Factor Limitations and Non-Ideal Diode Behaviour Due to Voltage-Dependent Rear Surface Recombination Velocity”, Progress in Photovoltaics, Vol. 1, No. 2, pp. 133-143, 1993.
[20]  A.W. Stephens, A.G. Aberle and M.A. Green, “Surface Recombination Velocity Measurements at Silicon/Silicon Dioxide Interface by Microwave-Detected Photoconductance Decay”, J. Appl. Phys., Vol. 76, pp. 363-370, 1994.
[21]  Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Nature Mater. 2003, 2, 382.
[22]  Marc Dvorak, Su-Huai Wei, and Zhigang Wu1, “Origin of the Variation of Exciton Binding Energy in Semiconductors” PHYSICAL REVIEW LETTERS 110, 016402 (2013).