Physics and Materials Chemistry
ISSN (Print): 2372-7098 ISSN (Online): 2372-7101 Website: http://www.sciepub.com/journal/pmc Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
Physics and Materials Chemistry. 2016, 4(1), 6-9
DOI: 10.12691/pmc-4-1-2
Open AccessReview Article

CVD Growth of ZrC Layers at Different Temperatures

BAB Alawad1, 2, , S Biira1, H Bissett3, JT Nel3, TT Hlatshwayo1, PL Crouse4 and JB Malherbe1

1Department of Physics, University of Pretoria 0028, South Africa

2Department of Physics, Sudan University of Science and Technology, Khartoum, Sudan

3Applied Chemistry Division, South Africa Nuclear Energy Corporation (Necsa), P.O Box 582, Pretoria 0001, South Africa

4Department of Chemical Engineering, University of Pretoria 0028, South Africa

Pub. Date: November 07, 2016

Cite this paper:
BAB Alawad, S Biira, H Bissett, JT Nel, TT Hlatshwayo, PL Crouse and JB Malherbe. CVD Growth of ZrC Layers at Different Temperatures. Physics and Materials Chemistry. 2016; 4(1):6-9. doi: 10.12691/pmc-4-1-2

Abstract

Zirconium carbide (ZrC) layers were grown on a graphite substrate by chemical vapour deposition (CVD) at 1250°C, 1300°C and 1350°C. Zirconium tetrachloride (ZrCl4), methane (CH4), hydrogen (H2) and argon (Ar) were used as precursors. The deposited ZrC layers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XDR showed ZrC characteristic peaks with free carbon. Free carbon incorporated in the ZrC layer increased with deposition temperature. The average of grain size also increased with deposition temperature. The latter findings were confirmed by SEM results.

Keywords:
chemical vapour deposition (CVD) ZrC XRD SEM

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  F. Charollais, S. Fonquernie, C. Perrais, M. Perez, O. Dugne, F. Cellier, G. Harbonnier, and M.-P. Vitali, “CEA and AREVA R&D on HTR fuel fabrication and presentation of the CAPRI experimental manufacturing line,” Nucl. Eng. Des., vol. 236, no. 5, pp. 534-542, 2006.
 
[2]  H. O. Pierson, Handbook of chemical vapor deposition: principles, technology and applications. William Andrew, 1999.
 
[3]  T. Xie, W. A. Mackie, and P. R. Davis, “Field emission from ZrC films on Si and Mo single emitters and emitter arrays,” J. Vac. Sci. Technol. B, vol. 14, no. 3, pp. 2090-2092, 1996.
 
[4]  Q. Zhang, J. He, W. Liu, and M. Zhong, “Microstructure characteristics of ZrC-reinforced composite coating produced by laser cladding,” Surf. Coatings Technol., vol. 162, no. 2, pp. 140-146, 2003.
 
[5]  L. D’Alessio, A. Santagata, R. Teghil, M. Zaccagnino, I. Zaccardo, V. Marotta, D. Ferro, and G. De Maria, “Zirconium carbide thin films deposited by pulsed laser ablation,” Appl. Surf. Sci., vol. 168, no. 1, pp. 284-287, 2000.
 
[6]  C.-S. Chen, C.-P. Liu, and C.-Y. Tsao, “Influence of growth temperature on microstructure and mechanical properties of nanocrystalline zirconium carbide films,” Thin Solid Films, vol. 479, no. 1, pp. 130-136, 2005.
 
[7]  T. Ogawa, K. Ikawa, and K. Iwamoto, “Chemical vapor deposition of ZrC within a spouted bed by bromide process,” J. Nucl. Mater., vol. 97, no. 1, pp. 104-112, 1981.
 
[8]  K. Ikawa, “Vapor deposition of zirconium carbide-carbon composites by the chloride process,” J. Less Common Met., vol. 29, no. 3, pp. 233-239, 1972.
 
[9]  J. A. Glass, N. Palmisiano, and R. E. Welsh, “The chemical vapor deposition of zirconium carbide onto ceramic substrates,” in MRS Proceedings, 1998, vol. 555, p. 185.
 
[10]  T. Ogawa, K. Ikawa, and K. Iwamoto, “Effect of gas composition on the deposition of ZrC-C mixtures: The bromide process,” J. Mater. Sci., vol. 14, no. 1, pp. 125-132, 1979.
 
[11]  J. H. Park, C. H. Jung, D. J. Kim, J. Y. Park, “Temperature dependency of the LPCVD growth of ZrC with the ZrCl 4--CH 4--H 2 system,” Surf. Coatings Technol., vol. 203, no. 3, pp. 324-328, 2008.
 
[12]  A. K. Pattanaik and V. K. Sarin, “Basic principles of CVD thermodynamics and kinetics,” Chem. Vap. Depos. Surf. Eng. Ser, vol. 2 (2000): 23.
 
[13]  Q. Liu, L. Zhang, L. Cheng, and Y. Wang, “Morphologies and growth mechanisms of zirconium carbide films by chemical vapor deposition,” J. Coatings Technol. Res., vol. 6, no. 2, pp. 269-273, 2009.
 
[14]  S. Biira, B. A. B Alawad, H. Bissett, J. T. Nel, T. T. Hlatshwayo, P. L. Crouse, and J. B. Malherbe, “Synthesis of ZrC coatings in an RF induction-heating CVD system,” Thin Solid Films, Submitted, 2016.
 
[15]  R. Delhez, Th. H, De Keijser, and E. J. Mittemeijer, “Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis,” Fresenius’ ZeitschriftfürAnal. Chemie, vol. 312, no. 1, pp. 1-16, 1982.