Physics and Materials Chemistry
ISSN (Print): 2372-7098 ISSN (Online): 2372-7101 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
Physics and Materials Chemistry. 2016, 4(1), 1-5
DOI: 10.12691/pmc-4-1-1
Open AccessArticle

Structural and Optical Properties and Relaxation Process of Pulsed Laser Grown and Annealed Mo-doped ZnO Nanostructures

M. Bachir Gaye1, C. B. Ndao1, E. H. O. Gueye1, NM Ndiaye1, , I Ngom1, BD Ngom1, B. Lo1, P. D. Tall1 and AC Beye1

1Laboratoire de Photonique et de Nano-Fabrication, Groupe de physique du Solide et Science des Matériaux, Faculté des sciences et Techniques Université Cheikh Anta Diop de Dakar (UCAD), B.P. 25114 Dakar-Fann Dakar (Senegal)

Pub. Date: June 18, 2016

Cite this paper:
M. Bachir Gaye, C. B. Ndao, E. H. O. Gueye, NM Ndiaye, I Ngom, BD Ngom, B. Lo, P. D. Tall and AC Beye. Structural and Optical Properties and Relaxation Process of Pulsed Laser Grown and Annealed Mo-doped ZnO Nanostructures. Physics and Materials Chemistry. 2016; 4(1):1-5. doi: 10.12691/pmc-4-1-1


ZnO is a well-known good transparent conducting oxide (TCO), which becomes a donor-type semiconductor when doped with Al, In, Ga or Zr impurities. ZnO-based TCO nano-structures exhibit room temperature electrical conductivity of the order of 10-4Ω /cm., which is comparable to SnO2: In, i.e. Indium doped Tin Oxide (ITO). The need for an alternative to ITO in the growing solar cell and flat panel display markets previously drove the studies of ZnO-based TCO because their low cost and absence of toxicity are attractive factors compared to ITO. Furthermore, the synthesis methodology should allow large coatings for flat panels and solar cells applications specifically. This contribution reports on the structural and opto-electronics properties of ZnO:Mo nano-structures in the ultraviolet, visible and infrared deposited by pulsed laser deposition on borosilicate substrate. The structural investigations carried out by means of x-ray diffraction technique (XRD) showed that the polycrystalline film have a hexagonal (Würtzite) structure with lattice parameter a and b of 3.242 and 5.176Å respectively. The UV-Visible transmission is more than 80%, while the IR transmission is less than 10% showing the highly transparent and conducting properties of the films thereby appropriate for opto-electronic windows.

ZnO TCO band gap solar cell PLD

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  L. Vayssiere, K. Keis & A. Hagfeldt, J. Chem. Mater. 13, p.4395, (2001).
[2]  D.S. Ginley & C. Bright, Mater. Res. Bull.25, p.15, (2000).
[3]  C.G. Granqvist, A. Azens, A. Hjelm, L.Kullman, G.A. Niklasson, D.Ronnow, M. Stromme Matson, M. Veszlei & G. Vaivars, Sol. Energy. 63 (4), p.199, (1998).
[4]  B. Wang, N. Han, D. Meng, R. Yue, J. Yan, & Y. Chen, Particuology, Volume 9, Issue 3, Pages 253-259 June (2011),
[5]  X. Jiang, Y. Liu, Y. Gao, X. Zhang, & L. Shi, Particuology, Vol.8, Issue 4, Pages 383-385 August (2010).
[6]  J. Sithole, B.D. Ngom, S. Khamlich, E. Manikanadan, N. Manyala, M.L. Saboungi, D.Knoessen, R. Nemutudi, M. Maaza, Appl. Surf. Sci. (2012).
[7]  P. X. Gang, L. Manna & W. Yang, Nature. 404, p.5964, (2000).
[8]  R.G. Gordon, Mater. Res. Soc. Bull. 25, n8, p.52, (2000).
[9]  M. Joseph, H. Tabata & T. Kawai, Jpn. J. Appl. Phys., Part 2: Lett.38, p. L1205, (1999).
[10]  Z.K. Tang, G.K.L. Wong, P.Yu, M. Kawasaki, A. Ohtomo, H. Koinamura & Y. Segawa, Appl. Phys. Letts. 72 (25), p.3270, (1998).
[11]  Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, Journal Of Applied Physics 98, 041301 (2005).
[12]  Number Density and Diameter Control of Chemical Bath Deposition of ZnO Nanorods on FTO by Forced Hydrolysis of Seed Crystals Journal of the American Ceramic Society 97 (4), 1028-1034 (2014).
[13]  Single Step Integration of ZnO Nano- and Microneedles in Si Trenches by Novel Flame Transport Approach: Whispering Gallery Modes and Photocatalytic Properties ACS Applied Materials & Interfaces 2014 6 (10), 7806-7815.
[14]  B. D. Ngom, T. Mpahane , N. Manyala, O. Nemraoui, U. Buttner, J.B. Kana, A.Y. Fasasi, M. Maaza and A.C. Beye, Applied Surface Science, 255, 4153-4158 (2009).
[15]  B. D. Ngom, O. Sakho , N. Manyala, J.B. Kana, N. Mlunguisi, L. Gerbous, A.Y. Fasasi, M. Maaza, A.C. Beye, Applied Surface Science, 255, 7314-7318 (2009).
[16]  Y. Sun, G. M. Fuge, and M. N. R. Ashfold, Chemical Physics Letters, vol. 396, no. 1-3, pp. 21-26, (2004).
[17]  Z.K. Tang, G.K.L. Wong, P.Yu, M. Kawasaki, A. Ohtomo, H. Koinamura & Y. Segawa, Appl. Phys. Letts. 72 (25), p.3270, (1998),
[18]  B. E. Sernelius, K. F. Berggren, Z. C. Jin, I. Hamberg and C. G. Granqvist, Phys. Rev. B 37 10244 (1988).
[19]  E. Jill Roth, Barbara L. Frazier, Nestor R. Apuya and Karl G. Lark, the Genetics Society of America (1989).
[20]  R. Swanwpel J. Phys. E : Sci. Instrum. 16 1214 (1983).
[21]  W. Sellmeier, Annalen der Physik und Chemie 143, 271 (1871).