Physics and Materials Chemistry
ISSN (Print): 2372-7098 ISSN (Online): 2372-7101 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
Physics and Materials Chemistry. 2015, 3(2), 30-36
DOI: 10.12691/pmc-3-2-3
Open AccessArticle

Effect of Air Blast Furnace Slag and γ-Alumina Content on Dielectric Properties and Physical Properties of Porcelain Insulators

Doaa A. Abdel Aziz1, , Mobarak H. Aly2, Ibrahim A. Salem3 and Salah A. Abead4

1Ceramic Department, National Research Center, Dokki, Cairo, Egypt

2Environmental Studies and Researches Institute, University of Sadat City

3Geology Department, Faculty of Science, Tanta University

4Geologist, Faculty of Science, Tanta University

Pub. Date: December 19, 2015

Cite this paper:
Doaa A. Abdel Aziz, Mobarak H. Aly, Ibrahim A. Salem and Salah A. Abead. Effect of Air Blast Furnace Slag and γ-Alumina Content on Dielectric Properties and Physical Properties of Porcelain Insulators. Physics and Materials Chemistry. 2015; 3(2):30-36. doi: 10.12691/pmc-3-2-3


In this study, the effect of air blast furnace slag (ABFS) and γ-Alumina additions on densification, crystalline phases, microstructure, mechanical and electrical properties were investigated. ABFS was added partially in replacement of γ-Alumina and/or feldspar for preparing electro-porcelain compositions. The presence of slag from 15 up to 30 mass % to the standard mix (γAS0) which fired at 1300C for 1h led to relatively low bulk density (BD) ranging between (2.21 and 2.32 g/cm3) as compared with standard mix (γAS0) (BD 2.51 g/cm3), this may be due to presence of much high fluxing oxides in the fired bodies. The main phases recorded were anorthite, corundum, cristobalite with traces mullite The relevant of electroceramic bodies produced exhibited high values for volume resistivity (VR) (25x1011 to 30x1011Ω/cm) and relatively low values in the dielectric strength (DS) (11 to 12.43 kv/mm ) as compared with standard mix (γAS0), (VR) (12x1011Ω/cm) and (DS) (15.76 kv/mm), respectively. The present results show that it is possible application of recycled slag after grinding and elimination any iron contamination for the production of low voltage electrical insulators electro-ceramic bodies.

slag γ-Alumina densification crystalline phases microstructure mechanical and electrical properties

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 4


[1]  Richerson, D.W. (1982). Modern Ceramic Engineering, Marcel and Dekker, Inc., New York, USA, pp. 47.
[2]  Callister, W.D. (2003). Materials Science and Engineering, An introduction, 6th ed., John Wiley and Sons, USA, pp. 642.
[3]  Islam, R.A., Chan, Y.C. and Islam, M.F. (2004). Structure–property relationship in high-tension ceramic insulator fired at high temperature, Materials Science and Engineering B106 132–140.
[4]  Chaudhuri, S.P., Sarkar, P. and Chakraborty, A.K. (1999). Electrical resistivity of porcelain in relation to constitution, Ceramics International 25, 91-99.
[5]  Carty, W.M. and Senapati, U. (1998). Porcelain-raw materials, processing, phase evolution and mechanical behavior, J. Am. Ceram. Soc. 81, 3-20.
[6]  Jackson, M.J. and Mills, B. (2001). Vitrification heat treatment and dissolution of quartz grinding wheel bonding systems, Br. Ceram. Trans. 100 (1), 1-8.
[7]  Jouene, C.A. (2001). Traite´ de Ce`ramique et Mate´riaux Mineraux., Edition Septima, Paris.
[8]  Vittel, C. (1986). Pates et Glac¸ ures Ce´ramiques, Edition Delta S.A CH-1800 VEVEY.
[9]  Karamanova, E., Avdeev, G. and Karamanov, A. (2011). Ceramics from blast furnace slag, kaolin and quartz, J Eur Ceram Soc; 31: 989-98.
[10]  Eberstein, M., Reinsch, S., Muller, R., Deubener, J. and Schiller, W.A. (2009). Sintering of glass matrix composites with small rigid inclusions, J Eur Ceram Soc; 29: 2469-79.
[11]  Ozdemir, I. and Yilmaz, S. (2007). Processing of unglazed ceramic tiles from blast furnace slag, J Mater Process Technol; 183: 13-7.
[12]  Dana, K. and Das S.K. (2004). Partial substitution of feldspar by B.F. slag in triaxial porcelain:phase and microstructural evolution, J Eur Ceram Soc;24:3833-9.
[13]  Mostafa, N.Y., Shaltout, A.A., Abdel-Aal, M.S. and El-maghraby, A. (2010). Sintering mechanism of blast furnace slag-kaolin ceramics, Mater Des, 31:3677-828-12.
[14]  Ibrahim, D.M., Abdel Fattah, W.I. and Nour, F. (1980).Air cooled blast-furance slag as fluxining material in the ceramic industry, Ber Dt Keram Ges, 57, 9-10.
[15]  Abdel Aziz, D.A., Elwan, M.M. and Ibrahim, D.M. (2000). Anorthite in Tile bodies based on air cooled blast furance slag, Ceramica Acta, 12, 3, 32- 43.
[16]  Abdel Aziz, D.A. and Ibrahim, D.M. (2001). Electro-ceramic bodies based on slag and active alumina phases, Cfi/Ber. DKG 78, 9, 47-51.
[17]  Anonymons. (1975). Annual book of ASTM standards part 17, Amer. soc. Test. Mater.
[18]  ASTM (1958), Designation: D116-44 , Standard methods of testing electrical porcelain.
[19]  Harms, W. (1978). Fast firing dinnerware: state-of-art, Ceram. Ind. Mag. 110, 20-23.
[20]  Marghussian, V.K. and Yekta, B.E. (1994). Single fast fired wall tiles containing Iranian iron slags, Br. Ceram. Trans. 93 (4), 141-145.
[21]  Hojamberdiev, M., Eminov, A. and Xu, Y. (2011). Utilization of muscovite granite waste in the manufacture of ceramic tiles Ceramics International 37 ,871-876.
[22]  Dana, K., Das, S. and Das, S.K. (2004). Effect of substitution of fly ash for quartz in triaxial kaolin–quartz–feldspar system, J. Eur. Ceram.Soc. 24, 3169-3175.
[23]  Mascolo, G., Del Bufalo, M. and Brunetti, O. (1980). Caratteristiche di une elettro-Porcellana confezionata con addizione di scoria d’altoforno, Ceramurgia,Anno X, n.2.
[24]  Kingery, W.D., Bowen, H.K. and Uhlmann, D.R. (1976). Introduction to ceramics, John Wiley and Sons, New York, 2nd. Edition.
[25]  Buchanan, R.C. (1991). In: R.C. Buchanan (Ed.), Properties of Ceramic Insulators, Ceramic Materials for Electronics, 2nd ed., Marcel Dekker Inc., New York.