Physics and Materials Chemistry
ISSN (Print): 2372-7098 ISSN (Online): 2372-7101 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
Physics and Materials Chemistry. 2015, 3(1), 7-11
DOI: 10.12691/pmc-3-1-2
Open AccessArticle

Synthesis, X­Ray Crystallography and DFT Studies of Ni(II) Complex with Tetradentate

Salem El-t. Ashoor1, and Hana B. Shawish1

1Chemistry Department, Faculty of Science, Misurata University, LIBYA

Pub. Date: July 15, 2015

Cite this paper:
Salem El-t. Ashoor and Hana B. Shawish. Synthesis, X­Ray Crystallography and DFT Studies of Ni(II) Complex with Tetradentate. Physics and Materials Chemistry. 2015; 3(1):7-11. doi: 10.12691/pmc-3-1-2


The paper presents a combined experimental and computational study of new compound {Bis(2R)-2-hydroxy-3-(iminomethyl)cyclohexaol}benzene Nickel(II) complex. The structure of consists of isolated neutral molecules in which the nickel (II) center atom is situated in a slightly distorted square-planar surrounding, the complex was found as monoclinic space group P-1 with a = 12.133 (6), b=15.017 (7), c =15.393(7)Å, α = 74.17, β = 70.92 (5), γ = 70.08 and Z = 4. The complex has been characterized via single-crystal X-ray diffraction and then the conformation of the molecular structure in the ground state has been calculated using the density functional theory (DFT) methods with generalised gradient approximation (Becke)(Lee–Yang–Parr) GGA BLYP level of theory often being used to obtain more exact results and TZP basis sets, frontier molecular orbitals (FMO) were investigated theoretically. By using Dewar-Chatt-Duncanson model, as a basis of the molecular orbital (MO) analysis shown the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital LUMO.

Nickel (II) complexes X-ray DFT MO HOMO LUMO FMO

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 7


[1]  Gupta, K.C., and Sutar, A. K., “Catalytic activities of Schiff base transition metal complexes”, Coord.Chem.Rev. 252, 1420-1450, 2008.
[2]  Haak, R. M., Decortes, A., Escudero-Adan, E.C., Belmonte, M.M., Martin, E., J.Benet-Buchholz, & Kleij, A.W., “Shape-Persistent Octanuclear Zinc Salen Clusters: Synthesis, Characterization, and Catalysis”, Inorg. Chem. 50, 7934-7936, 2011.
[3]  Belmonte, M.M., Escudero-Adán, E.C., Martin, E., & Kleij, A.W., “Isolation and characterization of unusual multinuclear Schiff base complexes: rearrangements reactions and octanuclear cluster formation”, Dalton Trans., 41, 5193-5200, 2012.
[4]  Arulmurugan, S., Kavitha, H.P., Venkatraman, B.R., “Biological activities of schiff base and its complexes”, A review. Rasayan J. Chem., 3, 385-410, 2010.
[5]  Bian, H.D., Xu, J.Y., Gu, W., Yan, S.P., Cheng, P., Liao, D.Z. and Jiang, Z.H., “{N,N'-Bis[(5-chloro-2-hydroxyphenyl)phenylmethylene]ethylendiaminato}nickel(II)” Acta Cryst., 60 (5), 2004.
[6]  Lane, S. R., Sisay, N., Carney, B., Dannoon, S., Williams, S., Engelbrecht, H.P., Barnes, C. L., and Jurisson, S.S., “ Re(V) and Re(III) Complexes with Sal2phen and Triphenylphosphine: Rearrangement, Oxidation and Reduction”, Dalton Trans, 40(1), 269-276, 2010.
[7]  T. Ziegler, “Density functional theory as a practical tool for the study of elementary reaction steps in organometallic chemistry” Pure and Applied Chemistry, 63, 873-878, 1991.
[8]  P. M. W. Gill, B. G. Johnson, J. A. Pople, and M. J. Frisch, “The performance of the Becke-Lee-Yang-Parr (B-LYP) density functional theory with various basis sets,” Chemical Physics Letters, 197, (4-5), 499-505, 1992.
[9]  F. F. Jian, P. S. Zhao, Z. S. Bai, and L. Zhang, “Quantum chemical calculation studies on 4-phenyl-1-(propan-2- ylidene) thiosemicarbazide”, Structural Chemistry, 16 (6), 635-639, 2005.
[10]  Schrodinger, E., Ann. Phys., 79, 361, 1926.
[11]  Schrodinger, E., Ann. Phys., 79, 489, 1926.
[12]  Schrodinger, E., Ann. Phys., 80, 437, 1926.
[13]  Schrodinger, E., Ann. Phys., 81, 109, 1926.
[14]  Nassar, A.M., Hassan, A.M., Elkmasha, A.N. and Ahmed, Y.Z., IJCBS., 2, 83-93, 2012.
[15]  Sheldrick, G. M., SADABS. University of Gottingen, Germany, Standard Software References, 1996.
[16]  Sheldrick, G. M. Acta Crystallographica Section A: Foundations of Crystallography 64 (2008)112.
[17]  Farrugia, L. J., Journal of Applied Crystallography, 32 (4), 837-838, 1999.
[18]  Farrugia, L. J., “ORTEP-3 For Windows—A Version Of ORTEP-III With A Graphical User Interface (GUI),” Journal Of Applied Crystallography, 30, 565, 1997.
[19]  Westrip, S.P. Publcif. In Preparation, 2009.
[20]  Veld, G.T.,. Bickelhaupt, F.M, Baerends, E.J., Guerra, C.F., Van Gisbergen, S.J. A., Snijders, J.G., T. Ziegler; J. Comp. Chem., 22(9), 931, 2001.
[21]  Universiteit Vrije. ADF2012. [Internet]. 2012 Available From: Www.Scm.Com.
[22]  Perdew, J.P., Burke, K., M. Ernzerhof; Phys. Rev. Lett., 77(18), 3865, 23, 1996.
[23]  G.R. Parr, W. Yang, “Density Functional Theory Of Atoms And Molecule” Oxford University Press, 1989.
[24]  L. Versluis, T. Ziegler, J. Chem. Phys., 88, 322, 1988.
[25]  I.C. Santos, M. Vilas-Boas, M.F.M. Piedade, C. Freire, M.T. Duarte, B. De Castro, Polyhedron, 19, 655-664, 2000.
[26]  F.H. Allen, O. Kennard, R. Taylor, Acc. Chem. Res. 16, 146, 1983.
[27]  F.H. Allen, J.E. Davies, J.J. Galloy, O. Johnson, O. Kennard, C.F. Macrae, G.F. Mitchell, G.F. Mitchell, J.M. Smith, D.G. Watson, J. Chem. Inf. Comput. Sci., 31, 187, 1987.
[28]  J. Chat And, L. A. Duncanso, J. Chem. Soc., 2939, 1953.
[29]  I. Fleming, “Frontier Orbitals And Organic Chemical Reactions”, John Wiley & Sons, London, UK, 1976.