Physics and Materials Chemistry
ISSN (Print): 2372-7098 ISSN (Online): 2372-7101 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
Physics and Materials Chemistry. 2014, 2(1), 20-24
DOI: 10.12691/pmc-2-1-4
Open AccessArticle

Borosilicate Glass Containing Bismuth and Zinc Oxides as a Hot Cell Material for Gamma-Ray Shielding

H. A. Saudi1, , H. A. Sallam1 and K. Abdullah2

1Physics Department, Faculty of Science, Al-Azhar University, Girls Branch, Nasr City, Cairo, Egypt

22Physics Department, Faculty of Science, Al-Azhar University, boys Branch, Nasr City, Cairo, Egypt

Pub. Date: February 18, 2014

Cite this paper:
H. A. Saudi, H. A. Sallam and K. Abdullah. Borosilicate Glass Containing Bismuth and Zinc Oxides as a Hot Cell Material for Gamma-Ray Shielding. Physics and Materials Chemistry. 2014; 2(1):20-24. doi: 10.12691/pmc-2-1-4


Gamma-ray attenuation coefficients (the half value layer parameters, gamma – ray shielding properties) for the x ZnO - (5−x) Bi2O3 -10 B2O3 -40 SiO2 (x = 0, 5, 10, 15 and 20) at 662, 1173 and 1332 keV photon energies have been determined experimentally, using a narrow beam transmission method, as well as theoretically using the ‘mixture rule’ and the ‘XCOM’ computer software. The molar volume and FTIR investigations have been used to study the structural properties of the glass system. Optical, UV-visible, absorption measurements were performed also to investigate the transmittance aimed to investigate the performance of the glass system for using as hot cells for shielding windows in nuclear technology.

borosilicate glasses FTIR measurements radiation shielding

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Sukhpal Prehar, Min Zi, Delvac Oceandy, Adam Pickard, Elizabeth Cartwright, Ludwig Neyses, Journal of Molecular and Cellular Cardiology, Volume 44, Issue 4, April 2008, Page 755.
[2]  Murat Kurudirek, Yüksel Özdemir, Önder Şimşek, Rıdvan Durak, Journal of Nuclear Materials, Volume 407, Issue 2, 15 December 2010, Pages 110-115.
[3]  S.R. Manohara, S.M. Hanagodimath, L. Gerward, Journal of Nuclear Materials, Volume 393, Issue 3, 15 September 2009, Pages 465-472.
[4]  H.A. Saudi, A.G. Mostafa, N. Sheta, S.U. El Kameesy, H.A. Sallam, Physica B: Condensed Matter, Volume 406, Issue 21, 1 November 2011, Pages 4001-4006.
[5]  Y.I. Alivov, D.C. Look, B.M. Ataev, M.V. Chukichev, V.V. Mamedov, V.I. Zinenko, Y.A. Agafonov, A.N. Pustovit, Solid State Electron., 48 (12) (2004), p. 2343.
[6]  J.H. Hubbell, S.M. Seltzer. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 213, January 2004, Pages 1-9.
[7]  Pawan P. Singh, John H. Cushman, Dirk E. Maier, Chemical Engineering Science, Volume 58, Issue 11, June 2003, Pages 2409-2419.
[8]  F.G. Bianchini, L.D. Riu, G. Gagliardi, M. Gulielmi, C.G. Pantano, Glastech. Ber., 64 (8) (1991), pp. 205–217.
[9]  Tom O'Haver, Intro to Signal Processing-Deconvolution, University of Maryland at College Park, Retrieved, 2008.
[10]  Domingos De Sousa Meneses, Myriam Eckes, Leire del Campo, Cristiane N. Santos, Yann Vaills, Patrick Echegut, Vibrational Spectroscopy, Volume 65, March 2013, Pages 50-57.
[11]  Yufeng Chen, Gensheng Yu, Fei Li, Junchao Wei, Journal of Non-Crystalline Solids, Volume 358, Issue 15, 1 August 2012, Pages 1772-1777.
[12]  G. Chryssikos, L. Liu, C. Varsamis, E. Kamitsos, J. Non-Cryst. Solids, 235 (1998), p. 761.
[13]  Degang Deng, Hongping Ma, Shiqing Xu, Qian Wang, Lihui Huang, Shilong Zhao, Huanping Wang, Chenxia Li, Journal of Non-Crystalline Solids, Volume 357, Issue 5, 1 March 2011, Pages 1426-1429.
[14]  M. Subhadra, P. Kistaiah, Vibrational Spectroscopy, Volume 62, September 2012, Pages 23-27.
[15]  Nam Jin Kim, Young Hoon La, Sang Hyeok Im, Won-Tack Han, and Bong Ki Ryu, Electronic Materials Letters, Vol. 5, No. 4 (2009), pp. 209-212.