Physics and Materials Chemistry
ISSN (Print): 2372-7098 ISSN (Online): 2372-7101 Website: http://www.sciepub.com/journal/pmc Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
Physics and Materials Chemistry. 2014, 2(1), 7-13
DOI: 10.12691/pmc-2-1-2
Open AccessArticle

α- Zirconium Titanium Phosphates - Fibrous Cerium Phosphate Composite Membranes and Their 1,10- Phenanthroline Cu(II) Pillared Materials

Sadek K.Shakshooki1, , Mohamed B.Hassan2, Wafaa K.EL-Nowely2, Abdulhafiz El-Belazi1, Sumaia M. Abed3 and Mona.M. Al-Said3

1Department of Chemistry, Faculty of Science, Tripoli University

2Department of Chemistry, Sebha University, Sebha

3Industrial Research Centre, Tripoli, Libya

Pub. Date: January 05, 2014

Cite this paper:
Sadek K.Shakshooki, Mohamed B.Hassan, Wafaa K.EL-Nowely, Abdulhafiz El-Belazi, Sumaia M. Abed and Mona.M. Al-Said. α- Zirconium Titanium Phosphates - Fibrous Cerium Phosphate Composite Membranes and Their 1,10- Phenanthroline Cu(II) Pillared Materials. Physics and Materials Chemistry. 2014; 2(1):7-13. doi: 10.12691/pmc-2-1-2

Abstract

Nanosized fibrous cerium phosphate, Ce(HPO4)2.2.9H2O(nCePf), and α- Zirconium -Titanium Phosphates, ZrxTi1-x(HPO4)2.H2O(α-ZTP), where x = 0.9, 0.8, 0. 67, 0.34, were synthesized. Novel composite membranes [ZrxTi(1-x)(HPO4)2]0.25 [Ce(HPO4)2]0.75 .3.3H2O were prepared. Reactions of the resulting composite membranes with 1,10-phenanthroline in ethanol, followed by the addition of 0.1M CuCl2.2H2O, in (1:1) ethanol: aqueous solution, lead to the formation of novel pillared materials: [(H1.16) Zr0.9Ti0.1 (PO4)2]0.25[(H1.16 ) Ce (PO4)2]0.75(PhenCu)0.42.2.25H2O, [(H1.5)Zr0.8Ti0.2 (PO4)2]0.25 [( H1.5)Ce (PO4)2] 0.75 (Phen Cu)0.25.1.77H2O, [(H0.3 ) Zr0.67Ti (PO4)2] 0.25 [(H 0.3) Ce (PO4)2]0.75.(Phen Cu)0.85. 4H2O, [(H1.6)Zr0.34Ti0.66 (PO4)2]0.25 [(H1.6) Ce (PO4)2]0.75.(PhenCu)0.2. 2.22 H2O, respectively. They were characterized by chemical, X-ray diffraction (XRD) and thermal analysis (TGA), accordingly were formulated. XRD patterns of the composite materials retain (d) spacing reflection of α-ZTP and nCePf, where d001 = 7.58 Å and 11.38 Å, respectively, The resulting composites are thermally stable and can be considered as novel ecofriendly solid acid catalysts, Ionex changers and ionc conductance materials.

Keywords:
pillared α-zirconium titanium phosphate fibrous cerium phosphate composite membranes

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 15

References:

[1]  Shakshooki, S.K., Naqvi., N., Kowaleczyk, J.K., Khalil, S., Rais, M. and Tarish, F.: Effect of composition of ion exchange properties of amorphous, zirconium- titanium phosphates, Reactive Polymer, 7, 221-226, 1988.
 
[2]  Clearfield, A.: Inorganic Ion Exchange Materials, CRC Press, Bocca Raton, FL.US., 1982, pp5-77.
 
[3]  Clearfield, A. and Styne, J. A.: The preparation of crystalline zirconium phosphate and some observation on its ion exchange behavior, J. Inorg. Nucl. Chem., 26,117, 1964.
 
[4]  Shakshooki, S.K., Azzabi,O.H., Khalil, S., Kowalczyk, J. and Naqvi, N.: Crystalline mixed hafnium-titanium phosphates, Reactive Polymers, 17, 191-196, 1988.
 
[5]  Clearfield, A.: Ion exchange and adsorption in layered phosphates, Mater, Chem. and Phys., 35, 257-263, 1993.
 
[6]  Alberti, G., Bernasconi, M.G., Costantino, U. and Gill, G.S.: Ion exchange of trivalent cations on zirconium phosphate with large interlayer distance, J. Chromatog., 132, 177, 1977.
 
[7]  Alberti, G. and Torracca, E.: Synthesis of crystalline zirconium and titanium phosphate by direct precipitation, J. Inorg. Nucl. Chem., 30, 173, 1968.
 
[8]  Costantino,U.: Intercalation of alkanols and glycols into zirconnium (IV) hydrogenphosphate monohydrate, J.Chem.Soc. Dalton Trans., 402-406, 1979.
 
[9]  Vecchio, S., Di-Rocco, R. and Ferragina,C.: Intercalation compounds of γ-zirconium and γ-titanium phosphates 1,10-phenantroline copper complex materials, Themochimica acta, 453, 105-112, 2007.
 
[10]  Osaka, Y. and Nakagawa,T., Edt(r): Membrane science and technology, Marcel Dekker Inc N.Y., 1992.
 
[11]  Palacio, L., Ho, C., Paradanos, P., Calvo, J.I., Kherif, G., Larbot, A. and Hernandez, A.: Structure and charges of composite inorganic microfiltration membranes, J.Coll. and Surf., 138, 291-299, 1998.
 
[12]  Strathmann, H., Giorno, L. and Drioli, E.,Edt(r) : An introduction to membrane science and technology, Consiglio Nationale Della Ricerche, Roma, 2006.
 
[13]  Oyama. S.T. and Williams.S.M..S, Edt(r): Inorganic polymeric and composite membranes, Elsevier vol.14, 2011.
 
[14]  Lin, Y.S. and Burggraaf, A.J.: Preparation and characterization of high-temperatur thermally stable alumina composite membrane, J.Am. Ceramic Soc., 140, 361-364, 1991.
 
[15]  Lin, Y.S., de Vries, K.J., Brinkman, H.W. and A.J. Burggraaf. A .J: Oxygen semipermeable solid oxide membrane composites prepared by electrochemical vapour deposition, J. Membrane Science, 66, 211-226, 1992.
 
[16]  Wang, H.B. and Lin,Y.S.,: Effects of water vapour on gas permeation and separation properties of MFI zeolite membranes at high temperatures, AlChEJ., 58, 153162, 2012.
 
[17]  Zhang,S.S, Xu.K, Jow. T.R. An inorganic composite membrane as the separator of Li-ion batteries, J. of Power Sources, 140, 361–364, 2005,
 
[18]  Shakshooki, S.K., Naqvi N., Kowalezyk J.K., Khalil S., Rais M. and Tarish.F.A. J. Reactive Polymer, 7, 221, 1988.
 
[19]  Shakshooki, S.K., El-Azzabi, O.H., Turki, F.M., El-Akari, F.A., Abodlal, R.J. and El-Tarhuni, S.R.: FT-IR and thermal behavior of θ-type zirconium- and hafnium phosphates and their pellicular membranes, Egypt J. of Anal. Chem., 21, 45-56, 2012.
 
[20]  Shakshooki, S.K., El-Azzabi,O.H and Suliman,Y.A.: FT-IR spectra and thermal behavior of α-vanadyl phosphate hemihydrate and its intercalated Mn2+, Ni2+ and Zn2+ metal ions, The Libyan J. of Sci., 17, 23-31, 2013.