Physics and Materials Chemistry
ISSN (Print): 2372-7098 ISSN (Online): 2372-7101 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
Physics and Materials Chemistry. 2020, 6(1), 1-8
DOI: 10.12691/pmc-6-1-1
Open AccessArticle

Spectroscopic Study of Ultra High Molecular Weight Polyethylene (UHMWPE) and Mg-Ni-doped ZnFe2O3 Nano Composites

Asad Muhmmad Azam1, and Malik Sajjad Mehmood2

1Department of Physics, Umeå University, Umeå Sweden

2Universtity of Enginerng & Technology, Taxila, Pakistan

Pub. Date: October 21, 2020

Cite this paper:
Asad Muhmmad Azam and Malik Sajjad Mehmood. Spectroscopic Study of Ultra High Molecular Weight Polyethylene (UHMWPE) and Mg-Ni-doped ZnFe2O3 Nano Composites. Physics and Materials Chemistry. 2020; 6(1):1-8. doi: 10.12691/pmc-6-1-1


The present study aims at investigating the effect of incorporating nano scale MgxNixZn1-xFe2O3 (where x=0.15) as nano fillers on the physical and chemical stability of ultra high molecular weight polyethylene (UHMWPE). The effect of adding 1% and 2% (by weight) nano fillers on the physicochemical properties of UHMWPE/MgxNixZn1-xFe2O3 nano composites have also been investigated by using FTIR, Raman, and UV-VIS spectroscopy. FTIR data of UHMWPE/MgxNixZn1-xFe2O3 nano composites reveal that the addition of MgxNixZn1-xFe2O3 up to 1% induces significant chemical and physical structural alterations in UHMWPE matrix. However, this behavior is found to reduce on increasing the concentration of nano fillers from 1% to 2%. Raman spectroscopic data shows that crystalline contents of UHMWPE remain unaffected with the addition of nano fillers, however; a significant increase in amorphous contents and decrease in all-trans interphase region is observed. This behavior is attributed to the chain scission reactions due to addition of MgxNixZn1-xFe2O3 followed by compression moulding process at high pressure and elevated temperature. Absorption spectroscopy analysis revealed that the incorporation of MgxNixZn1-xFe2O3 results in decrease of energy band gaps from 2.14 eV to 2.08 eV (for direct transition) and from 1.54 eV to 1.38eV (for indirect transition) due to band gap energy which is induced because of MgxNixZn1-xFe2O3 incorporation as nano fillers within the PE matrix.

FTIR spectroscopy Raman spectroscopy UV-VIS spectroscopy nano composites UHMWPE MgxNixZn1-xFe2O3 energy bands

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  H. W. Baac, “High-Amplitude Photoacoustic Ultrasound Transmitters using Nanostructured-Composite Films,” in Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), Vancouver, 2016, p. SeTu1E.1.
[2]  K. S. Giesfeldt, R. M. Connatser, M. A. De Jesús, N. V. Lavrik, P. Dutta, and M. J. Sepaniak, “Studies of the Optical Properties of Metal-Pliable Polymer Composite Materials,” Applied Spectroscopy 57, 1346-1352 (2003).
[3]  D. Hay, P. Bagge, I. Khaw, L. Sun, O. Wood, Y. Chen, et al., “Ni-TaN Nanocomposite Absorber For Next-Generation Extreme Ultraviolet Lithography,” in Frontiers in Optics 2016, Rochester, New York, 2016, p. FTu1F.2.
[4]  G. Jia, Y. Zhang, and P. Wang, “Nano-photo-thermal energy drive MoS2/ZnO nanoheterojunctions growing,” Optical Materials Express 6, 876-883 (2016).
[5]  W. Ma, z. liu, Y. Sun, and J. Yuan, “Efficient Hybrid Solar Cells Based on Conjugated Polymer: PbSxSe1-x Nanocrystal Composites---Benefiting from Vertical Phase Segregation,” in International Photonics and Optoelectronics Meetings (POEM), Wuhan, 2013, p. ASu2A.3.
[6]  H.-C. Mai and T.-E. Hsieh, “Nano-Composite Recording Layers Applied to Write-Once High-Density Optical Data Storage,” in Optical Data Storage, Portland, Oregon, 2007, p. MD9.
[7]  J. H. Park, E.-S. Lee, J. Y. Lee, E. S. Lee, T. G. Lee, S.-H. Kim, et al., “Multimodal Nonlinear Optical Microscopy for Simultaneous 3-D Label-Free and Immunofluorescence Imaging of Biological Samples,” Journal of the Optical Society of Korea 18, 551-557 (2014).
[8]  C.-C. Tu, L. Tang, J. Huang, A. Voutsas, and L. Y. Lin, “Solution-processed photodetectors from colloidal silicon nano/micro particle composite,” Optics Express 18, 21622-21627 (2010).
[9]  M. Wan, Z. Liu, S. Li, B. Yang, W. Zhang, X. Qin, et al., “Silver Nanoaggregates on Chitosan Functionalized Graphene Oxide for High-Performance Surface-Enhanced Raman Scattering,” Applied Spectroscopy 67, 761-766 (2013).
[10]  F. Song, X. Shen, M. Liu, and J. Xiang, “Preparation and magnetic properties of SrFe12O19/Ni0.5Zn0.5Fe2O4 nanocomposite ferrite microfibers via sol-gel process,” Materials Chemistry and Physics 126, 791-796 (2011).
[11]  M. Blaszkiewicz, D. S. McLachlan, and R. E. Newnham, “The volume fraction and temperature dependence of the resistivity in carbon black and graphite polymer composites: An effective media—percolation approach,” Polymer Engineering & Science 32, 421-425 (1992).
[12]  A. E. Ferreira, M. L. Cerrada, E. Pérez, V. Lorenzo, H. Cramail, J. P. Lourenço, et al., “UHMWPE/SBA-15 nanocomposites synthesized by in situ polymerization,” Microporous and Mesoporous Materials 232, 13-25 (2016).
[13]  M. S. Mehmood, T. Yasin, M. S. Jahan, B. M. Walters, M. Ahmad, and M. Ikram, “EPR Study of γ-Irradiated UHMWPE Doped with Vitamin E: Assessment of Thermal Effects on the Organic Radicals During Vitamin E Diffusion,” Applied Magnetic Resonance 44, 531-542 (2013).
[14]  B. Ghafoor, M. S. Mehmood, U. Shahid, M. A. Baluch, and T. Yasin, “Influence of γ-ray modified MWCNTs on the structural and thermal properties of high-density polyethylene,” Radiation Physics and Chemistry 125, 145-150 (2016).
[15]  M. Shafiee and A. Ramazani S.A, “Preparation and Characterization of UHMWPE/Graphene Nanocomposites Using Bi-Supported Ziegler-Natta Polymerization,” International Journal of Polymeric Materials and Polymeric Biomaterials 63, 815-819 (2014).
[16]  P.-G. Ren, Y.-Y. Di, Q. Zhang, L. Li, H. Pang, and Z.-M. Li, “Composites of Ultrahigh-Molecular-Weight Polyethylene with Graphene Sheets and/or MWCNTs with Segregated Network Structure: Preparation and Properties,” Macromolecular Materials and Engineering 297, 437-443 (2012).
[17]  S. S. Khasraghi and M. Rezaei, “Preparation and characterization of UHMWPE/HDPE/MWCNT melt-blended nanocomposites,” Journal of Thermoplastic Composite Materials 28, 305-326 (2015).
[18]  M. Hashim, Alimuddin, S. Kumar, S. E. Shirsath, E. M. Mohammed, H. Chung, et al., “Studies on the activation energy from the ac conductivity measurements of rubber ferrite composites containing manganese zinc ferrite,” Physica B: Condensed Matter 407, 4097-4103 (2012).
[19]  S. E. Shirsath, R. H. Kadam, S. M. Patange, M. L. Mane, A. Ghasemi, and A. Morisako, “Enhanced magnetic properties of Dy3+ substituted Ni-Cu-Zn ferrite nanoparticles,” Applied Physics Letters 100, 042407 (2012).
[20]  K. Raj, B. Moskowitz, and R. Casciari, “Advances in ferrofluid technology,” Journal of Magnetism and Magnetic Materials 149, 174-180 (1995).
[21]  R. H. Kodama, C. L. Seaman, A. E. Berkowitz, and M. B. Maple, “Low-temperature magnetic relaxation of organic coated NiFe2O4 particles,” Journal of Applied Physics 75, 5639-5641 (1994).
[22]  M. Khairy and M. E. Gouda, “Electrical and optical properties of nickel ferrite/polyaniline nanocomposite,” Journal of Advanced Research 6, 555-562 (2015).
[23]  M. S. Mehmood, J. M. Shah, S. R. Mishra, and B. M. Walters, “The effect of high dose on residual radicals in open air irradiated α-T UHMWPE resin powder,” Radiation Physics and Chemistry 84, 100-104 (2013).
[24]  S. Raghuvanshi, B. Ahmad, A. Srivastava, J. Krishna, and M. Wahab, “Effect of gamma irradiation on the optical properties of UHMWPE (Ultra-high-molecular-weight-polyethylene) polymer,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 271, 44-47 (2012).
[25]  A. Abdul-Kader, “Photoluminescence and optical properties of He ion bombarded ultra-high molecular weight polyethylene,” Applied Surface Science 255, 5016-5020 (2009).
[26]  M. Ahmad, S. Ali, M. S. Mehmood, H. Ali, A. Khurshid, S. Firdous, et al., “Ex Vivo Assessment of Carbon Tetrachloride (CCl4)-Induced Chronic Injury Using Polarized Light Spectroscopy,” Applied Spectroscopy 67, 1382-1389 (2013).
[27]  V. Kawade, G. Bichile, and K. Jadhav, “X-ray and infrared studies of chromium substituted magnesium ferrite,” Materials Letters 42, 33-37 (2000).
[28]  R. Waldron, “Infrared spectra of ferrites,” Physical Review 99, 1727 (1955).
[29]  L. Costa, I. Carpentieri, and P. Bracco, “Post electron-beam irradiation oxidation of orthopaedic Ultra-High Molecular Weight Polyethylene (UHMWPE) stabilized with vitamin E,” Polymer Degradation and Stability 94, 1542-1547 (2009).
[30]  V. Sankaranarayanan and C. Sreekumar, “Precursor synthesis and microwave processing of nickel ferrite nanoparticles,” Current Applied Physics 3, 205-208 (2003).
[31]  E. S. Urkac, A. Oztarhan, F. Tihminlioglu, N. Kaya, D. Ila, C. Muntele, et al., “Thermal characterization of Ag and Ag+ N ion implanted ultra-high molecular weight polyethylene (UHMWPE),” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 261, 699-703 (2007).
[32]  A. Raghavender, N. Biliškov, and Ž. Skoko, “XRD and IR analysis of nanocrystalline Ni-Zn ferrite synthesized by the sol-gel method,” Materials letters 65, 677-680 (2011).
[33]  L. Costa and P. Bracco, “Mechanisms of crosslinking, oxidative degradation and stabilization of UHMWPE,” UHMWPE Biomaterials Handbook, 309 (2009).
[34]  M. Martínez-Morlanes, F. Medel, M. Mariscal, and J. Puértolas, “On the assessment of oxidative stability of post-irradiation stabilized highly crosslinked UHMWPEs by thermogravimetry,” Polymer Testing 29, 425-432 (2010).
[35]  M. S. Mehmood, B. M. Walters, T. Yasin, M. Ahmad, M. S. Jahan, S. R. Mishra, et al., “Correlation of residual radical’s with three phase morphology of UHMWPE: Analysis for the dependence on heat involved during vitamin E diffusion,” European Polymer Journal 53, 13-21 (2014).
[36]  A. Manikandan, J. Judith Vijaya, M. Sundararajan, C. Meganathan, L. J. Kennedy, and M. Bououdina, “Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method,” Superlattices and Microstructures 64, 118-131 (2013).