Research in Plant Sciences
ISSN (Print): 2333-8512 ISSN (Online): 2333-8539 Website: Editor-in-chief: Fathy El-Fiky
Open Access
Journal Browser
Research in Plant Sciences. 2017, 5(1), 15-25
DOI: 10.12691/plant-5-1-3
Open AccessArticle

Differential Responses of Commercial Tomato Rootstocks to Branched Broomrape

Rida Draie1, 2,

1Faculty of Agriculture, Idleb University, Syria

2Research work carried out at LBPV Laboratory, Nantes University, France

Pub. Date: August 02, 2017

Cite this paper:
Rida Draie. Differential Responses of Commercial Tomato Rootstocks to Branched Broomrape. Research in Plant Sciences. 2017; 5(1):15-25. doi: 10.12691/plant-5-1-3


Gravely infestation of tomato fields by Broomrape (Phelipanche ramosa) is growing in the Mediterranean basin. Completely devoid of chlorophyll, the root-parasite is entirely dependent on the host-derives and successively competes with the sink organs of infected plants. No efficient and economic control means has been found. Tomato grafting on resistant rootstocks is a very efficient solution for soil parasites control. The selected tomato rootstocks for their resistance to the soil parasites could be also a source of resistance to the Broomrape. In this work, we screen different commercial tomato rootstock genotypes for their resistance to Phelipanche ramosa. In the greenhouse conditions, we show that rootstocks are different in the degree of susceptibility to Broomrape. Attachment number, emergence number, and fresh matter of parasitic broomrapes are affected by rootstock genotype. A significant impact of the parasitism onto the dry weight of all infected tomato rootstocks with variable degree is observed. Energy, Groundforce and Eldorado which have less of attachment number and emergence number successively appear interesting for our objective.

commercial rootstocks tomato screening resistance tolerance branched broomrape

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 6


[1]  Hodosy (1981). Biological control of broomrape, Orobanche ramosa, a tomato parasite. In: Occurrence and Adaptability of Fusarium species to Control Broomrape in Hungary, Zoldsegtermesztesi, Kutato Intezet Bulletinje 14: 21-29.
[2]  Fracchiolla, Boari (2000). Effetti dell'infestazione di Orobanche ramosa sulla produzione di pomodoro ecavolfiore. Informatore Fitopatologico 2: 52-54.
[3]  Tóth P, Cagán L (2003). A decrease in tomato yield caused by branched broomrape (Orobanche ramosa) parasitization. Acta Fytotechnica et Zootechnica 6(3): 65-68.
[4]  Mauromicale G, Monaco AL, Longo AMG (2008). Effect of Branched Broomrape (Orobanche ramosa) Infection on the Growth and Photosynthesis of Tomato. Weed Science 56: 574-581.
[5]  Cubero JI (1983). Parasitic diseases in Vicia faba. With special reference to broomrape (Orobanche crenata Forsk.). In: Hebblethwaite P.D. (ed.), The faba bean (Vicia faba) a basis for improvement. Butterworth, London: 493-521.
[6]  Gressel J, Hanafib A, Headc G, Marasasd W, Obilanae AB, Ochandaf JS, T, Tzotzosh G (2004). Major heretofore intractable biotic constraints to African food security that may be amenable to novel biotechnological solutions. Crop Protection 23: 661-689.
[7]  Parker C, Riches CR (1993). Parasitic weeds of the world: Biology and control. CAB International, Wallingford, UK: 332p.
[8]  Barcinsky R (1934). C.R. Acad. Sci. U.R.S.S 1: 343.
[9]  Chabrolin C (1934). C.R. Acad. Sci., Pari8 198: 2275.
[10]  Joel DM, Steffens JC, Matthews DE (1995). Germination of weedy root parasites. In: Kigel J, Galili G, eds. Seed development and germination. New York: Marcel Dekker, Inc: 567-598.
[11]  Zemrag A (1999). L’orobanche. monographie et gestion dans les cultures des légumes alimentaires. Transfert de technologie en agriculture. PNTTA 63: 1-4.
[12]  Montemurro P, Fracchiolla M, Caramia D (2006). In vitro experiments on the control of Orobanche ramosa L. with glyphosate in tomato. Workshop Parasitic Plant Management in Sustainable Agriculture. Final meeting of COST849. ITQB Oeiras-Lisbon Portugal: 40.
[13]  Abu-Irmaileh, B.E. 1991a. Weed control in squash and tomato fields by soil solarization in the Jordan Valley. Weed Res. 31(3): 125-133.
[14]  Abu-Irmaileh, B.E. 1991b. Soil solarization controls broomrapes (Orobanche spp.) in host vegetable crops in the Jordan Valley. Weed Tech. 5: 575-581.
[15]  Amsellem Z, Barghouthi S, Cohen B, Goldwasser Y, Gressel J, Hornok L, Kerenyi Z, Kleifeld Y, Klein O, Kroschel J, Sauerborn J, Müller-Stöver D, Thomas H, Vurro M, Zonno M-C. (2001). Recent advances in the biocontrol of Orobanche (broomrape) species. BioControl 46(2): 211-228.
[16]  Boari A, Vurro M. (2004). Evaluation of Fusarium spp. and other fungi as biological control agents of broomrape (Orobanche ramosa). Biological Control 30: 212-219.
[17]  Hershenhorn J, Plakhine D, Goldwasser Y, Westwood JH, Foy CL, Kleifeld Y. (1998). Effect of sulfonylurea herbicides on early development of Egyptian brommrape (Orobanche aegyptiaca) in tomato (Lycopersicon esculentum). Weed Technology 12: 108-114.
[18]  Eizenberg H, Hershenhorn J, Graph S, Manor H. (2003). Orobanche aegyptiaca control in tomato with sulfonylurea herbicides. Acta Hort. (ISHS) 613: 205-208.
[19]  Lopez-Pérez JA, Le Strange M, Kaloshian I, Ploeg AT. (2006). Differential response of Mi gene-resistant tomato rootstocksto root-knot nematodes (Meloidogyne incognita). Crop Protection 25: 382-388.
[20]  Lejeune A, Constant S, Delavault P, Simier P, Thalouarn P, Thoiron S. (2006). Involvement of a putative Lycopersicon esculentum wall-associated kinase in the early steps of tomato-Orobanche ramosa interaction. Physiological and Molecular Plant Pathology 69: 3-12.
[21]  Dalela GG, Mathur RL. (1971). Resistance of varieties of eggplant, tomato and tobacco to broomrape (Orobanche cernua Loef.). Pest Articles and News Summaries 17: 482-483.
[22]  Abu-Gharbieh WI, Makkouk KM, Saghir AR. (1978). Response of different tomatocultivars to the root-knot nematode, tomatoyellow leaf curl virus, and Orobanche inJordan. Plant Dis. Repoter 62(3): 263-266.
[23]  Foy CL, Jacobsohn R, Jain R. (1987). Evaluation of tomato lines for resistance to glyphosate and/or Orobanche aegyptiaca. Pers. In: Parasitic Flowering Plants Proceeding of the 4th ISPFP (eds HC Weber & W Forstreuter). Marburg Germany: 221-230.
[24]  Foy CL, Jacobsohn R, Jain R. (1988) Screening of Lycopersicon spp. for glyphosate and/or Orobanche aegyptiaca Pers. resistance. Weed research 28(5): 383-391.
[25]  Kasrawi MA, Abu-Irmaileh BE. (1989). Resistance to branched broomrape (Orobanche ramosa) in tomato germplasm. HortScience 24(5): 822-824.
[26]  Qasem JR, Kasrawi MA. (1995). Variation of resistance to broomrape (Orobanche ramosa) in tomatoes. Euphytica 81: 109-114.
[27]  El-Halmouch Y, Benharrat H, Thalouarn P. (2006). Effect of root exudates from different tomato genotypes on broomrape (O. aegyptiaca) seed germination and tubercle development. Crop Protection 25: 501-507.
[28]  Whitney PJ. (1978). Broomrape (Orobanche) seed germination inhibitors from plant roots. Annals of Applied Biology 89: 475-478.
[29]  Whitney PJ, Carsten C. (1981). Chemotropic response of broomrape radicals to host root exudates. Ann. Bot 48: 919-921.
[30]  Miller JC, Tanksley SD (1990). RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theoretical and Applied Genetics 80: 437-448.
[31]  Causse M, Caranta C, Saliba-Colombani V, Moretti A, Damidaux R, Rousselle P. (2000). Valorisation des ressources génétiques de la tomate par l’utilisation de marqueurs moléculaires. Ressources génétiques : Cahiers Agricultures 9(3): 197-210.
[32]  Lambert L, Fortin R, Ouellet C. (2003). Le greffage de la tomate (Cultures en serres). Réseau d'Avertissements Phytosanitaires. Bulletin d’information 4: 6p.
[33]  Besri M. (2002). Alternatives to Methyl Bromide for tomato production in the Mediterranean area. Proceedings of International Conference on Alternatives to methyl Bromide. Seville Spain: 162-166.
[34]  Besri M. (2003). Tomato grafting as an alternative to Methyl Bromide in Morocco. Proceedings of the international research conference on methyl bromide alternatives and emissions reductions. San Diego California: 12.
[35]  Vitre A. (2002). Le greffage des tomates. Rapport technique: 4p.
[36]  El-Halmouch YH. (2004). Recherche de mécanismes de résistance à l'Orobanche chez des génotypes de tomate ; Aspects histologiques, physiologiques, moléculaires et génétiques Thèse de Doctorat Université de Nantes: 328.
[37]  Coïc Y, Lesaint C. (1975). La nutrition minérale et en eau des plantes en horticulture avancée. Le Document Technique de la SCPA 23: 1-22.
[38]  Labrousse P, Arnaud MC, Serieys H, Berville A, Thalouarn P (2001). Several mechanisms are involved in resistance of Helianthus to Orobanche cumana Wallr. Ann. Bot 88: 859-868.
[39]  Sillero JC, Rubiales D, Cubero JI. (1996). Risk of Orobanche resistance screening based only on number of emerged shoots per plant. In: Moreno M.T., J.I. Cubero, D. Berner, D. Joel, L.J. Musselman and C. Parker (eds.), Advances in parasitic plant research. Proceedings of the 6th International on parasitic weed symposium, Cordoba Espagne: 929p.
[40]  Gil J, Martin LM, Cubero JI. (1984). Resistance to Orobanche crenata Forsk. in Vicia sativa L. II. In: Parker C.L., L.J. Musselman, R.M. Polhill and A.K. Wilson (eds.). Proceedings of the Third International Symposium on ParasiticWeeds, ICARDA Aleppo: 221-229.
[41]  Gil J, Martın LM, Cubero JI. (1987). Genetics of resistance in V. sativa to O. crenata Forsk. Plant Breed 99: 134-143.
[42]  Cubero JI. (1991). Breeding for resistance to Orobanche species: a review In: Wegmann K. and L.J. Musselman (eds.). Progress in Orobanche research Proceedings of the international Workshop on Orobanche research. Obermarchtal Allemagne: 257-277.
[43]  Snelder Y, Moreno MT, Martin A, Gil J. (1994). Screening for resistance to Orobanche crenata Forsk in Vicia faba L. In: Pieterse A.H., J.A.C. Verkleij and S.J.ter Borg (eds.), Biology and management of Orobanche. . Proceeding of the 3rd International Workshop on Orobanche and related Striga research, Amsterdam Pays-Bas: 474-481.
[44]  Sillero JC, Moreno MT, Rubiales D. (1996). reliminary Screening for Broomrape (Orobanche crenata) resistance in Vicia species. In: Moreno M.T., J.I. Cubero, D. Berner, D. Joel, L.J. Musselman and C. Parker (eds.), Advances in parasitic plant research. Proceedings of the 6th International on parasitic weed symposium, Cordoba Espagne: 929p.
[45]  Abbes Z (2007). Estimation de la sensibilité et de la tolérance de différents génotypes de féverole (Vicia faba L.) à la plante parasite Orobanche foetida Poiret. Impact du génotype hôte sur les particularités physiologiques et métaboliques du parasite. Thèse de Doctorat Université de Nantes: 155p.
[46]  Draie R. (2009). Effet du greffage sur la productivité de la tomate en conditions de non infestation et d’infestation par l’orobanche. Caractérisation d’une invertase acide, enzyme majeure de la force de puits du parasite. Thèse de Doctorat, Université de Nantes: 191p.
[47]  Serghini K, Perez-de-Luque A, Castejon-Munoz M, Garcia-Torres L, Jorrin JV. (2001). Sunflower (Helianthus annuus L.) response to broomrape (Orobanche cernua Loefl.) parasitism: induced synthesis and excretion of 7-hydroxylated simple coumarins. J Exp Bot 52: 2227-2234.
[48]  Rubiales D, Perez-de-Luque A, Cubero JI, Sillero JC. (2003). Crenate broomrape (Orobanche crenata) infection in field pea cultivars. Crop Protection 22: 865-872.
[49]  Mabrouk Y, Zourgui L, Sifi B, Delavault P, Simier P, Belhadj O (2007). Some compatible Rhizobium leguminosarum strains in peas decrease infections when parasitised by Orobanche crenata. Weed Research 47: 44-53.
[50]  Abbes Z, Kharrat M, Delavault P, Simier P, Chaïbi W (2007). Field evaluation of the resistance of some faba bean (Vicia faba L.) genotypes to the parasitic weed Orobanche foetida Poiret. Crop Protection 26: 1777-1784.
[51]  Perez-de-Luque A, Jorrin J, Cubero JI, Rubiales D. (2005). Orobanche crenata resistance and avoidance in pea (Pisum spp.) operate at different developmental stages of the parasite. Weed Res. 45: 379-387.
[52]  Zhou WJ, Yoneyama K, Takeuchi Y, Iso S, Rungmekarat S, Chae SH, Sato D, Joel DM. (2004). In vitro infection of host roots by differentiated calli of the parasitic plant Orobanche. J Exp Bot 55: 899-907.
[53]  Press MC (1995). How do the parasitic weeds Striga and Orobanche influence host carbon relations? Aspects of Applied Biology 42: 63-70.
[54]  Barker ER, Press MC, Scholes JD, Quick WP. (1996). Interactions between the parasitic angiosperm Orobanche aegyptiaca and its tomato host: growth and biomass allocation. New Phytologist 133: 637-642.
[55]  Kropff M.J. and Schippers P. (1986). Simulation of the growth of faba beans (Vicia faba L.) infested with broomrapes (Orobanche crenata Forsk.). Proceedings of a workshop on biology and control of Orobanche. LH/VPO, Wageningen, The Netherlands. pp: 2-10.
[56]  Graves JD. (1995). Host-plant responses to parasitism. In: Press MC, Graves JD (eds). Parasitic plants. London: Chapman and Hall: 206-225.
[57]  Pieterse AH, Verkleij JAC. (1991). Effect of soil conditions on Striga development – a review. In: Ransom, JK, Musselman, LJ, Worsham AD, Parker, C (eds.). Proceedings of the 5th International Symposium of Parasitic Weeds. International Maize and Wheat Improvement centre (CIMMYT) Nairobi: 329-339.
[58]  Cechin I, Press MC. (1993). Nitrogen relations of the sorghum-Striga hermonthica host-parasite association: growth and photosynthesis. Plant, Cell & Environment 16: 237-247.
[59]  Brown R, Greenwood AD, Johnson AW, Long AG (1951). The stimulant involved in the germination of Orobanche minor Sm. I. Assay technique and bulk preparation of the stimulant. Biochem J 48: 559-564.
[60]  Johnson AW, Rosebery G, Parker C (1976). A novel approach to Striga and Orobanche control using synthetic germination stimulants. Weed Research 16: 223-227.
[61]  Mallet AI. (1973). Studies in the chemistry of Orobanche crenata germination factors present in the roots of Vicia faba and other hosts. Proc. Eur. Weed Res. Sympos Parasitic Weeds: 89-98.
[62]  Gadkar V, David-Schwartz R, Nagahashi G, Douds DD, Wininger S, Kapulnik Y. (2003). Root exudate of pmi tomato mutant M161 reduces AM fungal proliferation in vitro. FEMS Microbiology Letters 223: 193-198.
[63]  Zahran MK. (1982). Control of parasitic plants (broomrape and dodder) in different crops in Egypt. Agricultural Research Program. Final Technical Report PL 480. Agricultural Research Centre Cairo: 52p.
[64]  Saghir AR. (1986). Dormancy and germination of Orobanche seeds in relation to control methods. In S.J. ter Borg (ed.). Biology and Control of Orobanche. Landbouwhoge school, wageningen Netherlands: 25-34.
[65]  Stewart GR, Press MC. (1990). The physiology and biochemistry of parasitic angiosperms. Ann. Rev. Plant Physiol. Plant Mol. Biol 41: 127-151.
[66]  Shey FJ (1971). The effect of low levels of calcium on exudation of sugars from peanut roots under xenobiotic conditions. Ph.D. Thesis, Virginia Polytechnic Institute and State University Blacksburg VA 24061.
[67]  Avdeyev YI, Scherbinin BM. (1977). Tomato resistant to broomrape, Orobanche aegyptiaca. Report of the Tomato Genetics Cooperative, Department of Vegetative Crops, University of California Davis, Report No. 27.
[68]  Avdeyev YI, Scherbinin BM, Ivanova LM, Avdeyev AY. (2003). Studying of tomato resistance to broomrape and breeding varieties for processing. Acta Horticulturae (ISHS) 613: 283-290.
[69]  Kostov K, Batchvarova R, Slavov S. (2007). Application of chemical mutagenesis to increase the resistance of tomato to Orobanche ramosa L. Bulgarian Journal of Agricultural Science 13: 505-513.
[70]  Hershenhorn J (2006). Integrated broomrape control: sanitation, resistant lines, chemical and biological control—can we combine them together? In: Final COST 849 Meeting, State of the Art Lecture in Workshop on Parasitic Plant Management in Sustainable Agriculture, Oeiras-Lisbon Portugal.