Research in Plant Sciences
ISSN (Print): 2333-8512 ISSN (Online): 2333-8539 Website: http://www.sciepub.com/journal/plant Editor-in-chief: Fathy El-Fiky
Open Access
Journal Browser
Go
Research in Plant Sciences. 2015, 3(1), 12-17
DOI: 10.12691/plant-3-1-3
Open AccessArticle

Agromorphological, Chemical and Biochemical Characterization of Pumpkin (Cucurbita maxima and Cucurbita moschata, Cucurbitaceae) Morphotypes Cultivated in Cameroon

Mbogne Taboula Judith1, , Youmbi Emmanuel1, 2, Ibouraïman Balogoun3 and Ntsomboh Ntsefong Godswill1, 4

1Faculty of Science, Department of Plant Biology, University of Yaounde I, Cameroon

2Centre Africain de recherche sur bananier et plantain (CARBAP), Njombe, Cameroon

3Faculté des Sciences Agronomiques, Département de Biologie Végétale, Université d’Abomey- Calavi

4Institute of Agricultural Research for Development (IRAD), Specialized Centre for Oil Palm Research of La Dibamba (CEREPAH), P. O. Box 243 Douala, Cameroon

Pub. Date: April 09, 2015

Cite this paper:
Mbogne Taboula Judith, Youmbi Emmanuel, Ibouraïman Balogoun and Ntsomboh Ntsefong Godswill. Agromorphological, Chemical and Biochemical Characterization of Pumpkin (Cucurbita maxima and Cucurbita moschata, Cucurbitaceae) Morphotypes Cultivated in Cameroon. Research in Plant Sciences. 2015; 3(1):12-17. doi: 10.12691/plant-3-1-3

Abstract

This study was aimed at evaluating pumpkin (Cucurbita maxima and Cucurbita moschata) morphotypes cultivated in Cameroon. A prospective survey was undertaken to sample the knowhow of peasants on the management of pumpkin, followed by an agromorphological, chemical and biochemical characterization in the West (O), Centre (C) and East (E) Regions. The survey revealed that pumpkin is mainly cultivated by women, and that about 20% is grown in association with other crops like maize, cassava and groundnuts. A total of 27 morphotypes were collection from the three regions. The most cultivated morphotypes, C2, C4, C5, E1, E2, E4, O2, O4 and O5 are equally the most consumed by the sampled populations. Principal components analysis on 10 variables revealed a variation between individuals. A positive correlation (r = 0.43; P> 0.05) was observed between fruit weight and grain number. Ascendant hierarchical classification (CAH) helped to produce a dendrogramme which groups morphotypes into three statistically homogenous classes at a distance of R2= 0.62. Analysis of chemical and biochemical constituents revealed no significant difference between the groups of morphotypes for all parameters (P <0.05) except for sodium and total sugars. These results constitute ground work for selection and improvement of Cucurbita species in Cameroon.

Keywords:
Pumpkin characterization prospection morphotypes Cucurbita spp. biochemical composition

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Achu B. M., Fokou E., Tchiégang C., M Fotso M., 2005. Nutritive value of some Cucurbitaceae oilseeds from different regions in Cameroon. Afr. J. Biotechnol. , 4 (11), 1329-1334.
 
[2]  Acosta-Patino J. L., Jimenez-Balderas E., Juarez-Oropeza M. A., Diaz-Zagoya J. C., 2001. Hypoglycemic action of Cucurbita ficifolia on Type 2 diabetic patients with moderately high blood glucose levels. J Ethnopharmacol; 77 (1): 99-101.
 
[3]  Alarcon-Aguilar F. J. and Hernandez-Galicia E., 2002. Evaluation of the hypoglycemic effect of Cucurbita ficifolia Bouche (Cucurbitaceae) in different experimental models. J Ethnopharmacol 82 (2-3): 185-9.
 
[4]  Anderson J. M. and Ingram J. S. I., 1993. Tropical soil biology and fertility: a handbook of methods. Second edition. CAB International, The Cambrian News, Aberstwyth, United Kingdom. 221 p.
 
[5]  Bates D. M., Robinson R.W. and Jeffrey C., 1990. Biology and utilization of the Cucurbitaceae. Cornell University Press, New York, United States. 485 p.
 
[6]  Bendich A., 2004. What have we learned about the "biological actions of beta-carotene"? J Nutr 134 (1): 225S-30S.
 
[7]  Benton J. and Vernon W., 1990. Sampling, handling and analyzing plant tissue sample. In: R.L. Westerman (ED) Soil testing and plant analysis (3rd ed). SSSA Book Service No. 3. 118 p.
 
[8]  Buondonno A., Rashad A. A. and Coppola E., 1995. Comparing test for soil fertility. 11. The hydrogen peroxide/sulfuric acid treatment as an alternative to the copper /selenium catalyzed digestion process for routine determination of soil nitrogen-Kjeldahl. Communication in Soil Science and plant analysis 26: 1607-1619.
 
[9]  Delia B., Rodriguez-Amaya D.B. and Kimura M., 2004. HarvestPlus Handbook for Carotenoid Analysis. Technical Monograph Series 2.
 
[10]  Demasse M. A., Gouado I., Schweigert F. J., Tchouanguep M.F., 2009. Effet of processing techniques (Streaming, Stream-drying and Frying) on the provitamin a carotenoids and vitamin C contents of squashes (Cucurbita Sp).
 
[11]  Dieter W., Gruenwedel and Whitaker J.R., 1956. Food Analysis: Principles and Techniques. Vol. 1, 264-265.
 
[12]  DNA (RAPD) markers. Euphytica 113: 19-24.
 
[13]  Du J., Yeyun Z., Xiaoyang S., Jiu J. Y., Saba K., Hong J., Jungwoo K., Jimin W., Jun H. K., Brian H. C., Bin H., Wei C., Sheng Z.Richard A. C., Johan A., Quan H and Hening L., 2011. Sirt5 Is a NAD-Dependent Protein Lysine Demalonylase and Desuccinylase. Science Magazine, 334 (6057): 806-809.
 
[14]  Dubois M., Gilles, K. A., Hamilton, J. K., Rebers, P.A and F. Smith., 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350-360.
 
[15]  Fokou E., Achu M.B. and Tchouanguep M.F., 2004. Preliminary Nutritional Evaluation of Five Species of Egusi Seeds in Cameroon. Afr. J. Food Agric. Nutr. Develop. (AJFAND). 4 (1): 1-11.
 
[16]  Fu C.L., Shi H. and Li Q.H., 2006. A review on Pharmacological Activities and Utilization Technologies of Pumpikin, Plant Foods Hum. Nutr., 61: 70-77.
 
[17]  Gropper S.S., Smith J.L., Groff J.L., 2005. Advanced Nutrition and Human Metabolism. Belmont: Thomson Wadsworth Publishing Co., 4: 381-405.
 
[18]  Gusmini G., 2003. Watermelon (Citrullus lanatus) breeding handbook. Raleigh, NC, USA: North Carolina State University. 180p.
 
[19]  Gwanama C., Labuschagne M. T. and Botha A. M., 2000. Analysis of genetic
 
[20]  Irié A., Zoro B., Koffi K., Djè Y., 2003. Caractérisation botanique et agronomique de trois espèces de cucurbites consommées en sauce en Afrique de l’Ouest: Citrullus sp., Cucumeropsis mannii Naudin et Lagenaria siceraria (Molina). Standl Biotechnol. Agron. Soc. Environ., 7 (3-4), 189-199.
 
[21]  Jun H. I., Lee H., Song G. S. and Kim Y. S., 2006. Characterization of Th Pectic Polysaccharide From Pumpkin Peel, LWT-Food Sci. Technol., 39: 554-56.
 
[22]  Koffi K., Guy K. Anzara, Malice M., Djè Y., Pierre B., Jean-Pierre B., Irié A. et Zoro Bi., 2009. Morphological and allozyme variation in a collection of Lagenaria siceraria (Molina). Biotechnol. Agron. Soc. Environ., 13 (2), 257-270.
 
[23]  Krinsky N. I. and Johnson E. J., 2005. Carotenoid actions and their relation to health and disease. Mol Aspects Med., 26 (6): 459-516.
 
[24]  Maggs-Kölling G., Madsen S. and Christiansen J., 2000. A phenetic analysis of morphological variation in Citrullus lanatus in Namibia. Genet. Resour. Crop Evol., 47: 385-393.
 
[25]  Mi Y.K., Eun J. K., Young-Nam K., Changsun C. and Bog-Hieu L., 2012. Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts. Nutr Res Pract., 6 (1): 21-27.
 
[26]  Morimoto Y., Maundu P., Fujimaki H. and Morishima H., 2005. Diversity of landraces of the white-flowered gourd (Lagenaria siceraria) and its wild relatives in Kenya: fruit and seed morphology. Genet. Resour. Crop Evol., 52: 737-747.
 
[27]  Murphy J. and Riley J. P., 1962. A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta, 27: 31-36.
 
[28]  Nerson H., 2002. Relationships between plant density and fruit and seed production in muskmelon. J. Am. Soc. Hortic. Sci., 127 (5), 245-256.
 
[29]  Palm C. A., Myers R.J.K. and Nandwa S.M., 1997. Combined use of organic and inorganic nutrient sources for soil fertility maintenance and replenishment: Replenishing soil fertility in Africa. Buresh, R.J., Sanchez, P.A., and Calou, F. (Eds.).Madison, WI, USA.Soil Sci. Soc. Am. (SSSA) 51: 120-125.
 
[30]  Roman-Ramos R, Flores-Saenz JL and arcon-Aguilar FJ., 1995. Anti-hyperglycemic effect of some edible plants. J Ethnopharmacol 11; 48 (1): 25-32.
 
[31]  Saha S., New L. S., Ho H. K., Chui W. K. and Chan E.C., 2010. Investigation of the role of the thiazolidinedione ring of troglitazone in inducing hepatotoxicity. Toxicol Lett 192: 141-149.
 
[32]  variation in Cucurbita moschata by random amplified polymorphic
 
[33]  Whitaker T. W. and Davis G. N., 1962. Cucurbits-botany, cultivation and utilization. Leonard Hill, London, United Kingdom. 249 pp.
 
[34]  Withney E. and Rady Rolfe S., 2008. Understanding Nutrition. Thomson Learning, 11 ième edition.
 
[35]  Yang X., Zhao Y. and Lv Y., 2007. Chemical Composition and Antioxidant Activity of an Acidic Polysaccharide Extracted From Cucurbita moschata Duchesen Ex Poiret, J. Agric. Food Chem., 55: 4684-4690.