Research in Plant Sciences
ISSN (Print): 2333-8512 ISSN (Online): 2333-8539 Website: http://www.sciepub.com/journal/plant Editor-in-chief: Fathy El-Fiky
Open Access
Journal Browser
Go
Research in Plant Sciences. 2013, 1(2), 4-14
DOI: 10.12691/plant-1-2-1
Open AccessArticle

Endogenous Polyamines: A Temporal Cellular Modulator of Somatic Embryogenesis in Guava (Psidium guajava L.) cv. Allahabad Safeda

Nasim Akhtar1,

1Department of Biotechnology, GITAM Institute of Technology, GITAM University, Gandhi Nagar Campus, Rushikonda, India

Pub. Date: April 27, 2013

Cite this paper:
Nasim Akhtar. Endogenous Polyamines: A Temporal Cellular Modulator of Somatic Embryogenesis in Guava (Psidium guajava L.) cv. Allahabad Safeda. Research in Plant Sciences. 2013; 1(2):4-14. doi: 10.12691/plant-1-2-1

Abstract

Somatic embryogenesis was improved in guava (Psidium guajava L.) cv. Allahabad safeda by periodic subculture of zygotic embryos explants (10-weeks post-anthesis) onto 3% (w/v) sucrose containing plant growth regulator free full-strength Murashige and Skoog’s agar-solidified medium following an initial induction in the presence of 2,4-dichlorophenoxy acetic acid (2,4-D). The interaction of 2,4-D concentrations and treatment durations showed significant effects on six different embryogenesis parameters viz. (i) frequency of embryogenesis, (ii) intensity of embryogenesis, (iii) frequency of elongated torpedo-stage somatic embryos, (iv) frequency of short torpedo-stage somatic embryos, (v) frequency of lower- (cotyledonary, heart, and globular) stages somatic embryos, and (vi) efficiency of embryogenesis. The embryogenesis responses were shifted gradually from 0.01 mgl-1 to 0.5 mgl-1 concentrations 2,4-D in a temporal manner. An 8-days treatment of zygotic embryo explants with 0.5 mgl-1 2,4-D induced somatic embryogenesis in highest efficiency. The role of exogenous and endogenous concentration of total, free, conjugated, and bound forms of various polyamines viz. putrescine, spermidine and spermine were studied and discussed in regulation of somatic embryogenesis as a function of 2,4-D concentration. The present study on guava (P. guajava L.) cv. safeda indicated that temporal regulation of somatic embryogenesis by 2,4-D was modulated by polyamines metabolism.

Keywords:
guava polyamines somatic embryogenesis zygotic embryo

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 4

References:

[1]  Dodeman, V.L., Ducreux, G., Kreis, M., Zygotic embryogenesis versus somatic embryogenesis. J. Exp. Bot., 48. 1493-1509. 1997.
 
[2]  Saurez, M.F., Bozhkov, P.V., Plant Embryogenesis: Methods in Molecular Biology 427, Humana Press, Springer Science & Business Media, New York, USA, 2008, 184pp.
 
[3]  Zimmerman, J.L., Somatic embryogenesis: a model for early development in higher plants, The Plant Cell, 5. 1411- 1423. 1993.
 
[4]  Akhtar, N., Jain SM Application of somatic embryogenesis for the improvement of tropical fruit trees. In: Somatic Embryogenesis in Woody Plants, Eds S.M. Jain, P.K. Gupta, R.J. Newton, Vol 6. Kluwer Academic Publisher, The Netherland, 2000, 215-247.
 
[5]  Jain, S.M., Gupta, P.K., Newton, R.J. (Ed.) Somatic Embryogenesis in Woody Plants, Vol 1-3 (Forestry Sciences). Kluwer Academic Publisher, The Netherland, 1995.
 
[6]  Akhtar, N., Studies on induction of somatic embryogenesis and production of artificial seeds for micropropagation of a tropical fruit tree guava (Psidium guajava L.). Ph D thesis, Banaras Hindu University, Varanasi, 1997. 203 pp.
 
[7]  Akhtar, N., Evaluation of the efficiency of somatic embryogenesis in guava (Psidium guajava L.). J. Hort. Sci. and Biotech, 85. 556-562. 2010.
 
[8]  Akhtar, N., Progress in Biotechnology of Guava (Psidium guajava L.). In: Microbial Biotechnology and Ecology (Eds D, Vyas, G.S. Paliwal, P.K. Khare, R.K. Gupta) (Daya Publication House, New Delhi, India, 2011, 501-519.
 
[9]  Akhtar, N., Somatic Embryogenesis for High Efficiency Micropropagation of Guava (Psidium guajava L.). In: Protocols for Micropropagation of Selected Economically Important Horticultural Plants (Eds M. Lambardi, E.A. Ozudogru, S.M. Jain). Humana Press, Springer Science+Business Media, LLC, New York, USA, 2012, 161-178.
 
[10]  Akhtar, N., Temporal regulation of somatic embryogenesis in guava (Psidium guajava L.). The Journal of Horticultural Science & Biotechnology, 88 (1). 93-102. 2013.
 
[11]  Cangahuala-Inocente, G.C., Vesco, L.L.D., Steinmatcher, D., Torres, A.C., Guerra, M., Improvements in somatic embryogenesis protocol in Feijoa (Acca sellowiana (Berg) Burret): Induction, conversion and synthetic seeds. Sci. Horti., 111. 228-234. 2007.
 
[12]  Cruz, G.S., Canhoto, J.M., Abreu, M.A., Somatic embryogenesis and plant regeneration from zygotic embryos of Feijoa sellowiana Berg. Plant Sci., 66. 263-270. 1990.
 
[13]  Canhoto, J.M., Lopes, M.L., Cruz, G.S., Somatic embryogenesis and plant regeneration in myrtle (Myrtaceae). Plant Cell Tiss. Org. Cult., 57. 13-21. 1999.
 
[14]  Das, P., Somatic embryogenesis in four tree legumes. Biotech. Res. Inter. 2011. 1-8. 2011.
 
[15]  Vagner, M., Vondrakova, Z., Fischerova, L., Vicankova, A., Malbeck, J., Endogenous phytohormones during Norway spruce somatic embryogenesis. In: Libiakova, G., Gajdosova, A., (Eds.), Proceedings COST 843 and 851 Action, Stará Lesná (28.6. - 3.7.). Nitra, Institute of Plant Genetics and Biotechnology, SAS, 2005.162-164.
 
[16]  Arnold, S.V., Sabala, I., Bozhkov, P., Dyachok, J., Filonova, L.H., Developmental pathways of somatic embryogenesis. Plant Cell Tiss. Org. Cult., 69. 233-249. 2002.
 
[17]  Filonova, L.H., Bozhkov, P.V., Arnold, V.S., Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking. J. Exp. Bot., 51. 249-264. 2000.
 
[18]  Kusano, T., Berberich, T., Tateda, C., Takahashi, Y., Polyamines: essential factors for growth and survival. Planta, 228. 367-381. 2008.
 
[19]  Minocha, R., Minocha, S.C., Simola, L.K., Somatic embryogenesis and polyamines in woody plants. In: Somatic Embryogenesis in Woody Plants (Eds S.M. Jain, P.K. Gupta, R.J. Newton, vol. 1). Kluwer Academic Publishers, The Netherlands, 1995, 337-360.
 
[20]  Tiburcio, A., Altabella, T., Borrell, A., Masgrau, C., Polyamine metabolism and its regulation. Physiol. Plant., 100. 664- 674. 1997.
 
[21]  Takeda, T.F., Hayakawa, K.O.E., Matsuoka, H., Effects of exogenous polyamine on embryogenic carrot cells. Biochem. Eng. J., 12. 21-28. 2002.
 
[22]  Silveira, V., Santa-Catarina, C., Tun, N.N., Scherer, G.F.E., Handro, W., Guerra, M.P., Floh, E.I.S., Polyamine effects on the endogenous polyamine contents, nitric oxide release, growth and differentiation of embryogenic suspension cultures of Araucaria angustifolia (Bert.) O. Ktze. Plant Sci., 171. 91-98. 2006.
 
[23]  Steiner, N., Santa-Catarina, C., Silveira, V., Floh, E.I.S., Guerra, M.P., Polyamine effects on growth and endogenous hormones levels in Araucaria angustifolia embryogenic cultures. Plant Cell Tiss. Org. Cult., 89. 55-62. 2007.
 
[24]  Farooq, M., Wahid, A., Lee, D.J. Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol. Plant., 31. 937-945. 2009.
 
[25]  Walden, R., Cordeiro, A., Tiburcio, A., Polyamines: small molecules triggering pathways in plant growth and development. Plant Physiol., 113. 1009-1013. 1997.
 
[26]  Imai, A., Matsuyama, T., Hanzawa, Y., Akiyama, T., Tamaoki, M., Saji, H., Shirano, Y., Kato, T., Hayashi, H., Shibata, D., Tabata, S., Komeda, Y., Takahashi, T., Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiol., 135.1565-1573. 2004.
 
[27]  Paul, A., Mitter, K., Raychaudhuri, S.S., Effect of polyamines on in vitro somatic embryogenesis in Momordica charantia L. Plant Cell Tiss. Org. Cult., 97. 303-311. 2009.
 
[28]  Mala, J., Cvikrova, M., Machova, P., Martincova, O., Polyamine during somatic embryo development in Norway spruce (Picea abies L.). J. Forest Sci., 55. 75-80. 2009.
 
[29]  Bertoldi, D., Tassoni, A., Martinelli, L., Nello, B., Polyamines and somatic embryogenesis in two Vitis vinifera cultivars. Physiol. Plant., 120. 657-666. 2004.
 
[30]  Murashige, T., Skoog, F., A revised medium for rapid growth and bioassays of tobacco tissue cultures. Physiol. Plant., 15. 473-497. 1962.
 
[31]  Biondi, S., Hagege, D., Rissini, P., Bagni, N., Polyamine metabolism and ethylene biosynthesis in normal and habituated sugar beet callus. Physiol. Plant., 89. 699-706. 1993.
 
[32]  Gallardo, M., Gallardo, M.E., Mantilla, A.J., Mufioz, de R.P., Sanchez-Calle, I.M. Inhibition of polyamine synthesis by cyclohexyamine stimulates the ethylene pathway and accelerates the germination of Cicer arientinum seeds. Physiol. Plant., 91. 9-16. 1994.
 
[33]  Akhtar, N., Kumari, N., Pandey, S., Ara, H., Singh, M., Jaiswal, U., Jaiswal, V.S., Jain, S.M., Somatic embryogenesis in tropical fruit trees. In: Somatic Embryogenesis in Woody Plants (Eds S.M. Jain, P.K. Gupta, R.J. Newton, Vol 6. Kluwer Academic Publisher, The Netherland, 2000, 93-140.
 
[34]  Rodriguez, A.P.M., Wetzstein, H.Y., A morphological and histological comparison of the initiation and development of pecan (Carya illinoinensis) somatic embryogenic cultures induced with naphthaleneacetic acid or 2,4-dichlorophenoxyacetic acid. Protoplasma, 204. 71-83. 1998.
 
[35]  Stefanello, S., Vesco, L.L.D., Ducroquet, J.P.H.J., Nodari, R.O., Guerra, M.P., Somatic embryogenesis from floral tissues of feijoa (Feijoa sellowiana Berg). Sci. Hort., 105. 117-126. 2005.
 
[36]  Michler, C.H., Somatic embryogenesis in Populus spp., In: Somatic Embryogenesis in Woody Plants (Eds SM Jain, PK Gupta, RJ Newton) vol. 1. Kluwer Academic Publishers, The Netherland, 1995, 81-98.
 
[37]  Alemanno, L., Berthouly, M., Michaux-Ferriere, N., A comparison between Theobroma cacao L. zygotic embryogenensis and somatic embryogenesis from floral explants. In Vitro Cell. Dev. Biol- Plant, 33. 163-172. 1997.
 
[38]  Mujib, A., Samaj, J., Somatic embryogenesis: Plant Cell Monograp,. Springer-Verlag Berlin Heidelberg, Germany, 2006, 357 pp.
 
[39]  Moura, E.F., Motoike, S.Y., Induction of somatic embryogenesis in immature seeds of guava tree cv. Paluma. Rev. Bras. Fruticul., 31. 507-511. 2009.
 
[40]  Ara, H., Jaiswal, U., Jaiswal, V.S., Somatic embryogenesis and plantlet regeneration in Amrapali and Chausa cultivars of mango (Mangifera indica L.). Curr. Sci., 78. 164-169. 2000.
 
[41]  Sharma, P., Rajam, M.V., Spatial and temporal changes in endogenous polyamine levels associated with somatic embryogenesis from different regions of hypocotyl of eggplant (Solanum melongena L.). J. Plant Physiol., 146. 658-664. 1995.
 
[42]  Yadav, J.S., Rajam, M.V., Spatial distribution of free and conjugated polyamines in leaves of (Solanum melongena L.) associated with differential morphogenetic capacity: efficient somatic embryogenesis with putrescine. J. Exp. Bot., 313. 1537-1545. 1997.
 
[43]  Yadav, J.S., Rajam, M.V., Temporal regulation of somatic embryogenesis by adjusting cellular polyamine content in eggplant. Plant Physiol., 116. 617-625. 1998.
 
[44]  Maki, H., Ando, S., Kodama, H., Komamine, A., Polyamines and the cell cycle of Catharanthus roseus cells in culture. Plant Physiol., 96. 1008-1013. 1991.
 
[45]  Minocha, S.C., Minocha, R., Role of polyamines in somatic embryogenesis. In: Biotechnology in Agriculture and Forestry: Somatic Embryogenesis and Synthetic Seeds I (Ed. Y.P.S. Bajaj) Vol 30, Springer-Verlag, Berlin, Germany, 1995, 53-70.
 
[46]  Santa-Catarina, C., Silveira, V., Scherer, G.F.E., Floh, E.I.S., Polyamines and nitric oxide levels relate with morphogenetic evolution in somatic embryogenesis of Ocotea catharinensis. Plant Cell Tiss. Org. Cult., 90. 93-101. 2007.
 
[47]  Rey, M., D´ıaz-Sala, C., Rodriguez, R., Comparison of endogenous polyamine content in hazel leaves and buds between the annual dormancy and flowering phases of growth. Physiol. Plant., 91. 45-50. 1994.
 
[48]  Galston, A.W., Kaur-Sawhney, R., Altabella, T., Tiburcio, A.T., Plant polyamines in reproductive activity and response to abiotic stress. Bot. Acta, 110. 197-207. 1997.
 
[49]  Label, P., Lelu, M.A., Exogenous abscisic acid fate during maturation of hybrid larch (Larix×leptoeuropaea) somatic embryos. Physiol. Plant., 109. 456-462. 2000.