Nanoscience and Nanotechnology Research
ISSN (Print): 2372-4668 ISSN (Online): 2372-4676 Website: http://www.sciepub.com/journal/nnr Editor-in-chief: Mehrdad Hamidi, Javad Verdi
Open Access
Journal Browser
Go
Nanoscience and Nanotechnology Research. 2017, 4(4), 120-126
DOI: 10.12691/nnr-4-4-1
Open AccessReview Article

Carbon Nanotube: A Review on Introduction, Fabrication Techniques and Optical Applications

Ekta Singh1, Richa Srivastava2, , Utkarsh Kumar3 and Anamika. D. Katheria1

1M.Tech Nano-optoelectronics, Babasaheb Bhimrao Ambedkar University, Lucknow, India

2University Institute of Engineering and Technology, Babasaheb Bhimrao Ambedkar University, Lucknow, India

3Department of Applied Physics, Babasaheb Bhimrao Ambedkar University, Lucknow, India

Pub. Date: August 18, 2017

Cite this paper:
Ekta Singh, Richa Srivastava, Utkarsh Kumar and Anamika. D. Katheria. Carbon Nanotube: A Review on Introduction, Fabrication Techniques and Optical Applications. Nanoscience and Nanotechnology Research. 2017; 4(4):120-126. doi: 10.12691/nnr-4-4-1

Abstract

Present review articles deals with the detail introduction, classification, fabrication techniques and optical application of carbon nanotubes. Presently various techniques are used to manufacture MWNTs or SWNTs. The optical properties of CNTs are closely linked to their structure and optical absorption of CNTs is of saturable intensity dependent nature. The various optical properties and detail application as light emitting diode are discussed.

Keywords:
CNTs mobility CVD LED

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 6

References:

[1]  K. Awasthi, A. Srivastava, O. N. Srivastava, “Synthesis of carbon nanotubes”, journal of nanoscience and nanotechnology, Vol. 5, pp. 1616-1636, Nov. 2005
 
[2]  M.S. Dresselhauss, “Electronic, Thermal and mechanical property of carbon nanotubes”, Philosophical Transaction of the Royal Society of London, Series A: Mathematical, Physical and Engineering Science, Vol. 362, no 1823, pp. 2065-2098, Oct 2004.
 
[3]  S. Iijima, “Helical microtubules of graphitic carbon” nature, Vol. 354, pp. 56-58, Nov 1991.
 
[4]  T.W. Ebbesen and P.M. Ajayan, “Ultrafast absorptive and refractive nonlinearity in MWNT”, Nature, Vol. 358, pp. 220-222, june1992.
 
[5]  T. Guo, P. Nikolaev, A.G. Rinzler, D. Tomanek, D.T. Colbert and R.E. Smalley, “Synthesis of nitrogen doped fullerenes using laser ablation”, J.phys. Chem.Vol99, pp. 10694-10697, 1995.
 
[6]  J. Kong, A.M. Cassel and H.J. Dai, “Chemical vapor deposition of methane for single wallnanotube”, Chem.P hys. Lett. Vol. 292, pp. 567-574, 1998.
 
[7]  J.W.G. Wildoer, L.C. Venema, A.G. Rinzler, R.E. Smalley and C. Dekker, Nature, Vol. 391, pp. 59-62, 1998.
 
[8]  T.W. Odom, J.L. Huang, P. Kim and C.M. Lieber, “Structure and electronic property of carbon nanotube”, J. Phys. Chem. B, Vol. 104, pp. 2794-2809, 2000.
 
[9]  E.N. Ganesh ,“Single Walled and Multi Walled Carbon Nanotube Structure, Synthesis and Applications”, International journal of innovative technology and exploring engineering, Vol. 2, no. 4, pp. 2278-3075, March 2013.
 
[10]  T.W. Ebbesen, “Synthesis of nanostructured carbon using CVD”, Phys. Today, Vol. 49, pp. 26-32, 1996.
 
[11]  T.W. Ebbesen, P.M. Ajayan, “large-scale synthesis of carbon nanotube”, Nature, Vol. 358, pp. 220-222, 1992.
 
[12]  D.T. Colbert., J., Zhang, S.M., Mcclure, P., Nikolaev, Z., Chen, J.H., Hafner, D.W., Owens,P.G., Kotula, C.B Carter, J.H., Weaver, A.G Rinzler, R.E.: Smalley, “Growth and sintering of carbon nanotube”, Science, Vol. 266, pp. 1218-1222 ,1994
 
[13]  S., Iijima, T.I. chihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, Vol. 363, pp. 603-605, 1993
 
[14]  D. S. Bethune, C. H. Kiang, M.S. Devries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, “Cobalt catalysed growth of carbon nanotube with single atomic layer walls”, Nature, Vol. 363, pp. 605-607 1993.
 
[15]  Y. Ando, S, Iijima, “Preparation of carbon nanotubes by arc-discharge evaporation”, Jpn. J. Appl. Phys. Part 2 Vol. 32, pp. L107-L109, 1993.
 
[16]  Y. Ando, “Preperation of carbon nanotube Fullerene”, SciTechnol, Vol. 2, pp. 173-180, 1994.
 
[17]  M. Wang, X. L. Zhao, M. Ohkohchi, Y.Ando, “Carbon Nanotubes Grown on the Surface of Cathode deposite by Arc Discharge Fullerene”, Sci Technol Vol. 4, pp. 1027-1039, 1996.
 
[18]  Y. Ando, X. Zhao, M. Ohkohchi, “Basic of Carbon Nanotubes” Carbon, Vol. 35, pp. 153-158, 1997.
 
[19]  X. Zhao, M. Ohkohchi, M. Wang, S. Iijima, T. Ichihashi,,Y. Ando, “large scale production of single walled nanotubes by electric arc technique” Carbon Vol. 35, pp. 775-781, 1997.
 
[20]  X.K. Wang, X. W. Lin, X.W., Dravid, V.P., Ketterson, J.B., Chang, R.P.H., “Carbon nanotube synthesized in a hydrogen arc discharge” Appl. Phys. Lett. Vol. 66 pp. 2430-2432, 1995.
 
[21]  Y. Ando, X L Zha.,M. Ohkohchi, “Synthesis of carbon nanostructured by chemical vapor deposition” Jpn. J. Appl. Phys. Part 2, Vol37, pp. L61-L63, 1998.
 
[22]  Y. Tai, K. Inukai, T. Osaki, M. Tazawa, J. Murakami, S Tanemura, YAndo, “Identification of compounds produced through contact arc vaporization of graphite under CH4 ambience”,Chem.Phys. Lett., Vol. pp. 224, 118-122, 1994.
 
[23]  A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y.H.Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E.Fischer, R.E. Smalley, “Crystalline Ropes of Metallic Carbon Nanotubes”, Science Vol. 273, pp. 483-487, 1996.
 
[24]  W.K. Maser, E. Munoz, A.M. Benito, M.T. Martinez, G.F. de la Fuente et al. “Carbon Based Magnetism: An Overview of the Magnetism of Metal Free Carbon”, Chem. Phys. Lett. PP. 292-587, 1998.
 
[25]  M. Yudasaka, M.F. Zhang, S. Iijima, “Porous target enhances production of single-wall carbon nanotubes by laser ablation”, Chem. Phys. Lett. pp. 323-549, 2000.
 
[26]  P.C. Eklund, B.K. Pradhan, U.J. Kim, Q.Xiong, J.E. Fischer et al. “Large-Scale Production of Single-Walled Carbon Nanotubes Using Ultrafast Pulses from a Free Electron Laser”, Nano Letters Vol. 2, pp. 1425-1429, 2002.
 
[27]  T. Guo, M.D. Diener, Y. Chai, M.J. Alford, R.E. Haufler, S.M. Mcclure, T. Ohno, J.H. Weaver, G.E. Scuseria, R.E. Smalley, “Uranium stabilization of C28- A tetravalent fullerenes”, Science, Vol. 257, pp. 1661-1664, 1992.
 
[28]  S. Bandow, A.M. Rao, K.A. Williams, A. Thess, R.E. Smalley, P.C. Eklund, “Purification of Single-Wall Carbon Nanotubes by Microfiltration”, J. Phys. Chem. B, Vol 101, pp. 8839-8842, 1997.
 
[29]  I.W. Chiang, B.E. Brinson, A.Y. Huang, P.A. Willis, M.J. Bronikowski, J.L. Margrave, R.E. Smalley, R.H. Hauge, “Purification and Characterization of Single-Wall Carbon Nanotubes (SWNTs) Obtained from the Gas-Phase Decomposition of CO (HiPco Process)”, J. Phys. Chem. B, Vol 105, pp. 8297-8301, 2001.
 
[30]  H. Ishii, H. Kataura, H. Shiozawa, H. Yoshioka, H. Otsubo, Y. Takayama, T. Miyahara, S., Suzuki, Y.Achiba, T. Nakatake, M. Narimura K. Higashiguchi, M. Shimada, H. Namatame, M. Taniguchi, “Direct observation of Tomonaga-Luttinger-liquid state in carbon nanotubes at low temperatures”. Nature, Vol. 426, pp. 540-544, 2003.
 
[31]  J. H. Hafner, M. J. Bronikowski, B. R. Azomian, P. Nikolaev, A. G. Rinzler, D. T. Colbert, K. A. Smith and R.E. Smalley, “Carbon Nanotube Synthesis and Growth Using Zeolite by Catalytic CVD and Applications”, Chem. Phys. Lett. Vol. 5, pp. 296-195, Dec. 1998.
 
[32]  M. Endo, Large Scale Production, “Selective Synthesis and Applications of Carbon NT by CCVD Process”, Chemtech. Vol. 18, pp. 568-576, Sep, 1988.
 
[33]  C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M. L. de la Chapelle, S.Lefrant, P. Deniard, R. Lee and J.E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique”, NatureVol. 388, pp. 756-758, Aug 1997.
 
[34]  R. Srivastava, Synthesis and characterization techniques of nanomaterials, International Journal of Green Nanotechnology: Physics and Chemistry, Vol. 4, pp. 1-11, 2012.
 
[35]  B.C. Yadav, R. Kumar, R. Srivastava and T. shukla, Flame Synthesis of Carbon Nanotubes using Camphor and its Characterization, International Journal of Green Nanotechnology: Physics and Chemistry, Vol. 3, pp. 170-179, 2011.
 
[36]  R. Saito, M. Fujita, G. Dresselhaus, and M. S Dresselhaus “Electronic structure of chiralgraphenetubules”, Appl. Phys. Lett. Vol60, pp. 2204-2206, May 1992.
 
[37]  S. Yamashita et al. “Saturable absorbers incorporating carbon nanotubes directlysynthesizedonto substrates and fibers and their application to mode-locked fiberlasers,” Opt. Lett. Vol. 29, pp. 1581-1583, 2004
 
[38]  AV. Margulis, TA Sizikova, “Theoretical study of third order nonlinear optical response of semiconductor carbon nanotube”. Physica B, Vol. 245, pp. 173-189, 1998.
 
[39]  P. Avouris, M. Freitag, V. Perebeinos, “Carbon-nanotube photonics and optoelectronics”, Nat. Photonics, Vol. 2 (6), pp. 341-350, 2008.
 
[40]  J. Zaumseil, X. Ho, J. R. Guest, G. P. Wiederrecht, J A. Rogers, “Electroluminescence from Electrolyte-Gated Carbon Nanotube Field-Effect Transistors”, ACS Nano, Vol. 3(8), pp. 2225-2234, 2009.
 
[41]  E. Adam, C. M. Aguirre, L. Marty, B. C. St-Antoine, F. Meunier, P. Desjardins, D. Ménard, R. Martel, “Electroluminescence from Single-Wall Carbon Nanotube Network Transistors” Nano Lett., Vol. 8 (8), pp. 2351-2355, 2008.
 
[42]  M. Engel, J. P. Small, M. Steiner, M. Freitag, A. A. Green, M. C. Hersam, P. Avouris, “Thin Film Nanotube Transistors Based on Self-Assembled”, Aligned Semiconducting Carbon Nanotube Arrays. ACS Nano, Vol. 2(12), pp. 2445-2452, Dec 2008.
 
[43]  G. Allaedini, E. Mahmoudi, P. Aminayi, S.M. Tasirini, A.W. Mohammad, “Optical investigation of reduced grapheme oxide/CNTs grown via simple CVD method”, synthetic metal 220, pp. 72-77, June 2016.
 
[44]  G. Allaedini, P. Aminayi, S.M. Tasirini, “Methane decomposition for carbon nanotube production: Optimization of the reaction parameters using response surface methodology”, Chemical engineering research and design 112, pp. 163-174, 2016.
 
[45]  G. Allaedini, P. Aminayi, S.M. Tasirini, “Yield optimization of nanocarbons prepared via chemical vapor decomposition of carbon dioxide using response surface methodology, diamond and related materials 66, pp. 196-205, 2016.