[1] | Majoinen, J., Kontturi, E., Ikkala, O., and Gray, D. G. 2012. SEM imaging of chiral nematic films cast from cellulose nanocrystal suspension. Cellulose, 19: 1599. |
|
[2] | Chen, Y. W., Tan, T. H., Lee, H. V., and Abd Hamid, S. B. 2017. Easy fabrication of highly thermal-stable cellulose nanocrystals using Cr(NO3)3 catalytic hydrolysis system: A feasibility study from macro- to nano-dimensions. Materials, 10: 42. |
|
[3] | Hindi, S. S, Z. 2017a. Suitability of date palm leaflets for sulphated cellulose nanocrystals synthesis. Nanoscience and Nanotechnology Research. 4 (1): 7-16. |
|
[4] | Araki, J., Wada, M. Kuga, S., and Okano, T. 1998. Low properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf. A, 142: 75-82. |
|
[5] | Sadeghifar, H. , Filpponen, I., Clarke, S. P., Brougham, D. F., and Argyropoulos, D. S. 2011. Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface J Mater Sci. 46: 7344. |
|
[6] | Lu, Q., Cai, Z., Lin, F., Tang, L., Wang, S., and Huang, B. 2016. Extraction of cellulose nanocrystals with a high yield of 88% by simultaneous mechanochemical activation and phosphotungstic acid hydrolysis. ACS Sustainable Chem. Eng., 4 (4): 2165-2172. |
|
[7] | Beck-Candanedo, S., Roman, M., and Gray, D. G. 2005. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal. Biomacromolecules, 6 (2): 1048-54. |
|
[8] | Dufresne, A. 2012. Nanocellulose: From nature to high performance tailored materials. Walter de Gruyter GmbH & Co. KG: 475 pp. |
|
[9] | Bondeson, D., Mathew, A. and Oksman, K. 2006. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose, 13: 171-180. |
|
[10] | Yin, Y. and Alivisatos, A. P. 2005. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature, 437: 664-670. |
|
[11] | Dufresne, A. 2013. Nanocellulose: a new ageless bionanomaterial. Materialstoday, 16 (6): 220-227. |
|
[12] | Azizi Samir, M. A. S., Alloin, F. and Dufresne, A. 2005. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules, 6: 612-626. |
|
[13] | Dong, X. M., Revol, J. F., Gray, D. 1998. Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose, 5: 19-32. |
|
[14] | Pakowski, Z. 2007. Modern methods of drying nanomaterials. Transp. Porous Med., 66:19-27. |
|
[15] | Hindi, S. S. Z. 2017b. Some crystallographic properties of cellulose I as affected by cellulosic resource, smoothing, and computation methods. International Journal of Innovative Research in Science, Engineering and Technology, 6 (1): 732-752. |
|
[16] | Luo, J., Ying, K., and Bai, J. 2005. Savitzky-Golay smoothing and differentiation filter for even number data. Signal Processing, 85 (7): 1429-1434. |
|
[17] | Mwaikambo, L.Y., and Ansell, M. P. 2002. Chemical modification of hemp, sisal, and kapok fibers by alkalization, Journal of Applied Polymer Science, 84 (12): 2222-2234. |
|
[18] | Jayaramudu, J., Guduri, B. R., and Rajulu, A. V. 2010. Characterization of new natural cellulosic fabric Grewia tilifolia, Carbohydrate Polymers, 79 (4): 847-851. |
|
[19] | Park, S., Baker, J. O., El-Himmell, M., Parilla, P. A., and Johnson, D. K., 2010. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels, 3: 10. |
|
[20] | Terinte, N., Ibbett, R., and Schuster, K. C. 2011. Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): Comparison between measurement techniques. Lenzinger Berichte, 89: 118-131. |
|
[21] | Schenzel, K., Fischer, S., and Brendler, E. 2005. New method for determining the degree of cellulose I crystallinity by mean of FT Raman spectroscopy. Cellulose, 12 (3): 223-231. |
|
[22] | Thygesen, A., Oddershede, J., Lilholt, H., Thomsen, A. B., and Stahl, K. 2005. On the determination of crystallinity and cellulose content in plant fibers. Cellulose, 12 (6): 563-576. |
|
[23] | Hindi, S. S. Z. 2013a. Calotropis procera: The miracle shrub in the Arabian Peninsula. International Journal of Science and Engineering Investigations, 2 (16): 10 pp. |
|
[24] | Borysiak, S. and Doczekalska, B. 2005. X-ray diffraction study of pine wood treated with NaOH. Fibers and Textiles in Eastern Europe, 5 (53): 87-89. |
|
[25] | Hindi, S. S. Z. 2013b. Characteristics of some natural fibrous assemblies for efficient oil spill cleanup. International Journal of Science and Engineering Investigations, 2 (16): 10 pp. |
|
[26] | ASTM D1105-84, Standard method for preparation of extractive-free wood, ASTM International, West Conshohocken, PA, 1989. |
|
[27] | Hindi, S. S. Z., A. A. Bakhashwain and A. A. El-Feel. 2011. Physico-chemical characterization of some Saudi lignocellulosic natural resources and their suitability for fiber production. JKAU; Met. Env. Arid Land Agric. Sci., 21 (2): 45-55. |
|
[28] | Hindi, S. S. Z. and Abohassan, R. A. 2015. Cellulose triacetate synthesis from cellulosic wastes by heterogeneous reactions. Bioresources, 10 (3), 5030-5048. |
|
[29] | Tang, L. G., Hon, D. N. S., and Zhu, Y. Q. 1997. An investigation in solution acetylation of cellulose by microscopic techniques. Journal of Applied Polymer Science, 64 (10): 1953-1960. |
|
[30] | Ciupina, V., Zamfirescu, S., and Prodan, G. 2007. Evaluation of mean diameter values using Scherrer equation applied to electron diffraction images, In: Nanotechnology-Toxicological Issues and Environmental Safety, NATO Science for Peace and Security Series: 231-237. |
|
[31] | Poletto, M., Ornaghi, H. L. and Zattera, A. J. 2014. Native cellulose: Structure, characterization and thermal properties. Materials, 7 (9): 6105-6119. |
|
[32] | Sherif S. Hindi, Mona O. Albureikan , Attieh A. Al-ghamdy, Haya Alhummiany and M. Shahnawaze Ansari. 2017. Synthesis and characterization of gum Arabic based bio-plastic membranes. Nanoscience and Nanotechnology Research, 4 (1): 32-42. |
|
[33] | Steel, R. G. D. and Torrie, T. H. 1980. Principles and procedures of statistics, N. Y., USA. |
|
[34] | Tonoli, G. H. D., Teixeira, E. M., Corrêa, A. C., Marconcini, J. M., Caixeta, L. A., Pereira-da-Silva, M. A., and Mattoso, L. H. C. 2012. Cellulose micro/nanofibres from Eucalyptus kraft pulp: Preparation and properties. Carbohydrate Polymers, 89 (1,5): 80-88. |
|
[35] | Sacui, I. A. et al., 2014. Comparison of the Properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl. Mater. Interfaces, 6 (9): 6127-6138. |
|
[36] | Kumar, A., Negi, Y. S., Choudhary, V. and Bhardwaj, N. K. 2014. Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. Journal of Materials Physics and Chemistry, 2 (1): 1-8. |
|
[37] | Chen, W. S., Yu, H. P., Liu, Y. X., Chen, P., Zhang, M. X., and Hai, Y. F. 2011. Individualization of cellulose nanofibres from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr. Polym., 83: 1804-1811. |
|
[38] | Wada, M., Heux, L., and Sugiyama, J. 2004. Polymorphism of cellulose I family: Reinvestigation of cellulose IV. Biomacromolecules, 5: 1385-1391. |
|
[39] | Wulandari, W. T., Rochliadi, A., and Arcana, I. M. 2016. Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. IOP Conf. Series. Materials Science and Engineering, 107: 012045. |
|
[40] | Clair, B., Almeras, T., Yamamoto, H., and Okuyama, J. 2006. Mechanical behavior of cellulose microfibrils in tension wood, in relation with maturation stress generation. Biophysics Journal, 91 (3): 1128-1137. |
|
[41] | Davidson, T., Newman, R. H., and Ryan, M. J. 2004. Variations in the fibre repeat between samples of cellulose I from different sources. Carbohydrate Research, 339 (18), 2889-2893. |
|
[42] | Mandal, A., and Chakrabarty, D. 2011. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr. Polym., 86: 1291-1299. |
|
[43] | Julien, S., Chomet, E., and Overend, R. P. 1993. Influence of acid pre-treatment (H2SO4, HCl, HNO3) on reaction selectivity in the vacuum pyrolysis of cellulose. Journal of Analytical and Applied Pyrolysis, 27(1), 25-43. |
|
[44] | Maren, R., and William, T. W. 2004. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules, 5: 1671-1677. |
|
[45] | George, J., Ramana, K. V., Bawa, A. S., and Siddaramaiah. 2011. Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Internl. J. Biologic. Macromol., 48: 50-57. |
|