Nanoscience and Nanotechnology Research
ISSN (Print): 2372-4668 ISSN (Online): 2372-4676 Website: http://www.sciepub.com/journal/nnr Editor-in-chief: Mehrdad Hamidi, Javad Verdi
Open Access
Journal Browser
Go
Nanoscience and Nanotechnology Research. 2017, 4(3), 106-114
DOI: 10.12691/nnr-4-3-4
Open AccessResearch Article

Nanocrystalline Cellulose: Synthesis from Pruning Waste of Zizyphus spina christi and Characterization

Sherif S. Z. Hindi1,

1Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdullaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia

Pub. Date: May 09, 2017
(This article belongs to the Special Issue Crystalline Cellulose: The Magic Industrial Material.)

Cite this paper:
Sherif S. Z. Hindi. Nanocrystalline Cellulose: Synthesis from Pruning Waste of Zizyphus spina christi and Characterization. Nanoscience and Nanotechnology Research. 2017; 4(3):106-114. doi: 10.12691/nnr-4-3-4

Abstract

Nanocrystalline cellulose (NCCs) was synthesized from pruning waste of Zizyphus spina christi using H2SO4 (64 %, wt/wt) under suitable hydrolysis conditions. The crystal growth of the NCCs from nano- into identical micrometric-scaled needles confirmed their ability to self-assembly. The aspect ratio of the NCCs was estimated using optical microscopy for needles, and by scanning electron microscopy (SEM) for powder, while their crystallinity index (CI), crystallite size (CS) and lattice spacing (LS) were estimated by X-ray diffraction (XRD). Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were also performed. The XRD-diffractogram of the NCCs was similar to that known for cellulose I. The CI of the NCCs was much higher (86.75%) than that for cellulose I. The CS of the NCCs was 2.78 nm that is smaller than that for cellulose I. The distance between the strata within the NCCs (LS) was found to be 0.214 nm. The TGA indicated a gradual increase in the mass loss upon heating the NCCs from 25°C up to 500°C in a flowing N2-atmosphere. The DTA showed presence of an endothermic peak (due to H2O-evaporation) and one exothermic peak (due to depolymerization and decomposition of the NCCs. Based on the results, the Zizyphus wood is suitable precursor for the NCCs production.

Keywords:
acid hydrolysis nanocrystalline cellulose aspect ratio SEM XRD TGA DTA

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Majoinen, J., Kontturi, E., Ikkala, O., and Gray, D. G. 2012. SEM imaging of chiral nematic films cast from cellulose nanocrystal suspension. Cellulose, 19: 1599.
 
[2]  Chen, Y. W., Tan, T. H., Lee, H. V., and Abd Hamid, S. B. 2017. Easy fabrication of highly thermal-stable cellulose nanocrystals using Cr(NO3)3 catalytic hydrolysis system: A feasibility study from macro- to nano-dimensions. Materials, 10: 42.
 
[3]  Hindi, S. S, Z. 2017a. Suitability of date palm leaflets for sulphated cellulose nanocrystals synthesis. Nanoscience and Nanotechnology Research. 4 (1): 7-16.
 
[4]  Araki, J., Wada, M. Kuga, S., and Okano, T. 1998. Low properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf. A, 142: 75-82.
 
[5]  Sadeghifar, H. , Filpponen, I., Clarke, S. P., Brougham, D. F., and Argyropoulos, D. S. 2011. Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface J Mater Sci. 46: 7344.
 
[6]  Lu, Q., Cai, Z., Lin, F., Tang, L., Wang, S., and Huang, B. 2016. Extraction of cellulose nanocrystals with a high yield of 88% by simultaneous mechanochemical activation and phosphotungstic acid hydrolysis. ACS Sustainable Chem. Eng., 4 (4): 2165-2172.
 
[7]  Beck-Candanedo, S., Roman, M., and Gray, D. G. 2005. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal. Biomacromolecules, 6 (2): 1048-54.
 
[8]  Dufresne, A. 2012. Nanocellulose: From nature to high performance tailored materials. Walter de Gruyter GmbH & Co. KG: 475 pp.
 
[9]  Bondeson, D., Mathew, A. and Oksman, K. 2006. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose, 13: 171-180.
 
[10]  Yin, Y. and Alivisatos, A. P. 2005. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature, 437: 664-670.
 
[11]  Dufresne, A. 2013. Nanocellulose: a new ageless bionanomaterial. Materialstoday, 16 (6): 220-227.
 
[12]  Azizi Samir, M. A. S., Alloin, F. and Dufresne, A. 2005. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules, 6: 612-626.
 
[13]  Dong, X. M., Revol, J. F., Gray, D. 1998. Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose, 5: 19-32.
 
[14]  Pakowski, Z. 2007. Modern methods of drying nanomaterials. Transp. Porous Med., 66:19-27.
 
[15]  Hindi, S. S. Z. 2017b. Some crystallographic properties of cellulose I as affected by cellulosic resource, smoothing, ‎and computation methods. International Journal of Innovative Research in Science, Engineering and Technology, 6 (1): 732-752.
 
[16]  Luo, J., Ying, K., and Bai, J. 2005. Savitzky-Golay smoothing and differentiation filter for even number data. Signal Processing, 85 (7): 1429-1434.
 
[17]  Mwaikambo, L.Y., and Ansell, M. P. 2002. Chemical modification of hemp, sisal, and kapok fibers by alkalization, Journal of Applied Polymer Science, 84 (12): 2222-2234.
 
[18]  Jayaramudu, J., Guduri, B. R., and Rajulu, A. V. 2010. Characterization of new natural cellulosic fabric Grewia tilifolia, Carbohydrate Polymers, 79 (4): 847-851.
 
[19]  Park, S., Baker, J. O., El-Himmell, M., Parilla, P. A., and Johnson, D. K., 2010. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels, 3: 10.
 
[20]  Terinte, N., Ibbett, R., and Schuster, K. C. 2011. Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): Comparison between measurement techniques. Lenzinger Berichte, 89: 118-131.
 
[21]  Schenzel, K., Fischer, S., and Brendler, E. 2005. New method for determining the degree of cellulose I crystallinity by mean of FT Raman spectroscopy. Cellulose, 12 (3): 223-231.
 
[22]  Thygesen, A., Oddershede, J., Lilholt, H., Thomsen, A. B., and Stahl, K. 2005. On the determination of crystallinity and cellulose content in plant fibers. Cellulose, 12 (6): 563-576.
 
[23]  Hindi, S. S. Z. 2013a. Calotropis procera: The miracle shrub in the Arabian Peninsula. International Journal of Science and Engineering Investigations, 2 (16): 10 pp.
 
[24]  Borysiak, S. and Doczekalska, B. 2005. X-ray diffraction study of pine wood treated with NaOH. Fibers and Textiles in Eastern Europe, 5 (53): 87-89.
 
[25]  Hindi, S. S. Z. 2013b. Characteristics of some natural fibrous assemblies for efficient oil spill cleanup. International Journal of Science and Engineering Investigations, 2 (16): 10 pp.
 
[26]  ASTM D1105-84, Standard method for preparation of extractive-free wood, ASTM International, West Conshohocken, PA, 1989.
 
[27]  Hindi, S. S. Z., A. A. Bakhashwain and A. A. El-Feel. 2011. Physico-chemical characterization of some Saudi lignocellulosic natural resources and their suitability for fiber production. JKAU; Met. Env. Arid Land Agric. Sci., 21 (2): 45-55.
 
[28]  Hindi, S. S. Z. and Abohassan, R. A. 2015. Cellulose triacetate synthesis from cellulosic wastes by heterogeneous reactions. Bioresources, 10 (3), 5030-5048.
 
[29]  Tang, L. G., Hon, D. N. S., and Zhu, Y. Q. 1997. An investigation in solution acetylation of cellulose by microscopic techniques. Journal of Applied Polymer Science, 64 (10): 1953-1960.
 
[30]  Ciupina, V., Zamfirescu, S., and Prodan, G. 2007. Evaluation of mean diameter values using Scherrer equation applied to electron diffraction images, In: Nanotechnology-Toxicological Issues and Environmental Safety, NATO Science for Peace and Security Series: 231-237.
 
[31]  Poletto, M., Ornaghi, H. L. and Zattera, A. J. 2014. Native cellulose: Structure, characterization and thermal properties. Materials, 7 (9): 6105-6119.
 
[32]  Sherif S. Hindi, Mona O. Albureikan , Attieh A. Al-ghamdy, Haya Alhummiany and M. Shahnawaze Ansari. 2017. Synthesis and characterization of gum Arabic based bio-plastic membranes. Nanoscience and Nanotechnology Research, 4 (1): 32-42.
 
[33]  Steel, R. G. D. and Torrie, T. H. 1980. Principles and procedures of statistics, N. Y., USA.
 
[34]  Tonoli, G. H. D., Teixeira, E. M., Corrêa, A. C., Marconcini, J. M., Caixeta, L. A., Pereira-da-Silva, M. A., and Mattoso, L. H. C. 2012. Cellulose micro/nanofibres from Eucalyptus kraft pulp: Preparation and properties. Carbohydrate Polymers, 89 (1,5): 80-88.
 
[35]  Sacui, I. A. et al., 2014. Comparison of the Properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl. Mater. Interfaces, 6 (9): 6127-6138.
 
[36]  Kumar, A., Negi, Y. S., Choudhary, V. and Bhardwaj, N. K. 2014. Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. Journal of Materials Physics and Chemistry, 2 (1): 1-8.
 
[37]  Chen, W. S., Yu, H. P., Liu, Y. X., Chen, P., Zhang, M. X., and Hai, Y. F. 2011. Individualization of cellulose nanofibres from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr. Polym., 83: 1804-1811.
 
[38]  Wada, M., Heux, L., and Sugiyama, J. 2004. Polymorphism of cellulose I family: Reinvestigation of cellulose IV. Biomacromolecules, 5: 1385-1391.
 
[39]  Wulandari, W. T., Rochliadi, A., and Arcana, I. M. 2016. Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. IOP Conf. Series. Materials Science and Engineering, 107: 012045.
 
[40]  Clair, B., Almeras, T., Yamamoto, H., and Okuyama, J. 2006. Mechanical behavior of cellulose microfibrils in tension wood, in relation with maturation stress generation. Biophysics Journal, 91 (3): 1128-1137.
 
[41]  Davidson, T., Newman, R. H., and Ryan, M. J. 2004. Variations in the fibre repeat between samples of cellulose I from different sources. Carbohydrate Research, 339 (18), 2889-2893.
 
[42]  Mandal, A., and Chakrabarty, D. 2011. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr. Polym., 86: 1291-1299.
 
[43]  Julien, S., Chomet, E., and Overend, R. P. 1993. Influence of acid pre-treatment (H2SO4, HCl, HNO3) on reaction selectivity in the vacuum pyrolysis of cellulose. Journal of Analytical and Applied Pyrolysis, 27(1), 25-43.
 
[44]  Maren, R., and William, T. W. 2004. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules, 5: 1671-1677.
 
[45]  George, J., Ramana, K. V., Bawa, A. S., and Siddaramaiah. 2011. Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Internl. J. Biologic. Macromol., 48: 50-57.