[1] | Reier, G. E. 2013. Fun facts about Avicel® microcrystalline cellulose also known as cellulose gel. Available: http://www.fmcbiopolymer.com/Food/Home/News/FiftyYearsofAvicel.aspx. |
|
[2] | Albers, J., Knop, K., and Kleinebudde, P. 2006. Brand-to-brand and batch-to-batch uniformity of microcrystalline cellulose in direct tableting with a pneumohydraulic tablet press. Pharm. Ind. 68: 1420-1428. |
|
[3] | Suzuki, T., and Nakagami, H. 1999. Effect of crystallinity of microcrystalline cellulose on the compactability and dissolution of tablets. Eur. J. Pharm. Biopharm. 47: 225-230. |
|
[4] | El-Sakhawy M., and Hassan, M. L. Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydrate Polymers. 67: 1-10. 2007. |
|
[5] | Chauhan, Y. P., Sapkal, R. S., Sapkal, V. S., and Zamre, G. S. 2009. Microcrystalline cellulose from cotton rags (waste from garment and hosiery industries. International Journal of Chemical Sciences. 7 (2): 681-688. |
|
[6] | Uesu, N. Y., Pineda, E. A., and Hechenleitner, A. A. 2000. Microcrystalline cellulose from soybean husk: effects of solvent treatments on its properties as acetylsalicylic acid carrier. International Journal of Pharmaceutics. 206: 85-96. |
|
[7] | Suvachittanont, S., and Ratanapan, P. 2013. Optimization of Micro Crystalline Cellulose Production from Corn Cob for Pharmaceutical Industry Investment. Journal of Chemistry and Chemical Engineering. 7: 1136-1141. |
|
[8] | Gaonkar, S. M., and Kulkarni, P. R. 1987. Improved method for the preparation of microcrystalline cellulose from water hyacinth. Textile Dyer Printer. 20 (26): 19-22. |
|
[9] | Gaonkar, S. M., and Kulkarni, P. R. 1989. Microcrystalline cellulose from coconut shells. Acta Polymer. 40: 292-293. |
|
[10] | Ilindra, A., and Dhake, J. D. 2008. Microcrystalline cellulose from bagasse and rice straw. Indian Journal of Chemical Technology. 15 (5): 497-499. |
|
[11] | Paralikar, K. M., and Bhatawdekar, S. P. 1988. Microcrystalline cellulose from bagasse pulp. Biological Wastes. 24: 75-77. |
|
[12] | Padmadisastra, Y., and Gonda, I. 1989. Preliminary studies of the development of a direct compression cellulose excipient from bagasse. Journal of Pharmaceutical Sciences. 78 (6): 508-521. |
|
[13] | Shah, D. A., Shah, Y. D., and Trivedi, B. M.. 1993. Production of microcrystalline cellulose from sugar cane bagasse on pilot plant and its evaluation as pharmaceutical adjunct. Research and Industry. 38 (3): 133-137. |
|
[14] | Tang, L.-G., Hon, D. N.-S., Pan, S.-H., Zhu, Y.-U., Wang, Z., and Wang, Z.-Z. 1996. Evaluation of microcrystalline cellulose. I. Changes in ultrastructural characteristics during preliminary acid hydrolysis. Journal of Applied Polymer Science. 59: 483-488. |
|
[15] | Abdullah, A. B. M. 1991. Production of jute microcrystalline cellulose. Journal of Bangladesh Academy of Science. 15 (2): 85-87. |
|
[16] | Kuga, S., and Brown, R. M. 1987. Lattice imaging of ramie cellulose. Polymer Communications Guildford. 28 (11): 311-314. |
|
[17] | Bochek, A. M., Shevchuk, I. L., and Lavrentev, V. N. 2003. Fabrication of microcrystalline and powdered cellulose from short flax fiber and flax straw. Russian Journal of Applied Chemistry. 76 (10): 1679-1682. |
|
[18] | Monschein, M., Reisinger, C., and Nidetzky, B. 2013. Enzymatic hydrolysis of microcrystalline cellulose and pretreated wheat straw: A detailed comparison using convenient kinetic analysis. Bioresource Technology. 128: 679-687. |
|
[19] | Ohwoavworhua, F. O., and Adelakun, T. A. 2010. Non-wood fibre production of microcrystalline cellulose from Sorghum caudatum: Characterisation and tableting properties. Indian Journal of Pharmaceutical Science. 72 (3): 295-301. |
|
[20] | Bhimte, N. A., and Tayade, P. T. 2007. Evaluation of microcrystalline cellulose prepared from sisal fibers as a tablet excipient: A technical note. Association of Pharmaceutical Scientists (AAPS). Pharmaceutical Science and Technology. 8 (1): E56-E62. 2007. |
|
[21] | Hindi, S. S. Z. 2013. Calotropis procera: The miracle shrub in the Arabian Peninsula. International Journal of Science and Engineering Investigations (IJSEI): 2 (16): 48-57. |
|
[22] | Carlin, B. 2008. Direct compression and the role of filler-binders. Augsburger, L. L., Augsburger, and L. L., Hoag, S. W. (Eds.). Pharmaceutical Dosage Forms: Tablets, Informa.: 173-216. |
|
[23] | Thoorens, G., Krier, F., Leclercq, B., Carlin, B., and Evrard, B. 2014. Microcrystalline cellulose, a direct compression binder in a quality by design environment: A review. International Journal of Pharmaceutics. 473 (1-2): 64-72. 2014. |
|
[24] | Hindi, S. S. Z., and Abohassan. R. A. 2016. Cellulosic microfibril and its embedding matrix within plant cell wall. International Journal of Innovative Research in Science. Engineering and Technology. 5 (3): 2727-2734. |
|
[25] | Landín, M., Martínez-Pacheco, R., Gómez-Amoza, J.L., Souto, C., Concheiro, A., and Rowe, R. C. 1993. Effect of batch variation and source of pulp on the properties of microcrystalline cellulose. Int. J. Pharm. 91: 133-141. |
|
[26] | Shlieout, G., Arnold, K., and Muller, G. 2002. Powder and mechanical properties of microcrystalline cellulose with different degrees of polymerization. AAPS PharmSciTech. 3: p. E11. |
|
[27] | Matrosovich, M., Matrosovich, T., Garten, W., and Klenk H.-D. 2006. New low-viscosity overlay medium for viral plaque assays. Virology Journal. 3: 63. |
|
[28] | Turbak, A. F., Snyder, F. W., and Sandberg, K. R. 1983. Microfibrilated cellulose, a new cellulose product: properties, uses, and commercial potential. Journal of Applied Polymer Science, Applied Polymer Symposium, 37: 815-827. |
|
[29] | Herrick, F. W., Casebier, R. L., Hamilton, J. K., and Sandberg, K. R. 1983. Microfibrillated cellulose: morphology and accessibility. Journal of Applied Polymer Science. Applied Polymer Symposium. 37: 797-813. |
|
[30] | Ohwoavworhua, F. O., Kunle, O. O., and Ofoefule, S. I. 2004. Extraction and characterization of microcrystalline cellulose derived from Luffa cylindrica plant. African Journal of Pharmaceutical Research and Development. 1: 1-6. |
|
[31] | Bashaiwoldu, A. B., Podczeck, F., and Newton, J. M. 2004. A study on the effect of drying techniques on the mechanical properties of pellets and compacted pellets. Eur J Pharm Sci. 21(2-3): 119-129. |
|
[32] | Ejikeme, P. M., 2008. Investigation of the physicochemical properties of microcrystalline cellulose from agriculture Wastes I: Orange Mesocarp. Cellulose. 15: 141-147. |
|
[33] | Ansel, C. H., Popovich, G. N., and V. L. Allen. 2005. Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems. New York: Lippincott Williams and Wilkins: pp.189. |
|
[34] | Ohwoavworhua, F. O., Ogah, E., and Kunle, O. O. 2005. Preliminary investigation of physicochemical and functional properties of alpha cellulose obtained from waste paper - A potential pharmaceutical Excipient. Journal of Raw Materials Research. 2: 84-93. |
|
[35] | Train, D. 1958. Some aspects of the property of angle of repose of powders. J Pharm Pharmacol. 10: 127T-34T. |
|
[36] | Kornblum, S. S., and Stoopak, S. B. 1973. A new tablet disintegrant agent: crosslinked polyvinylpyrollidone. J Pharm Sci. 62: 43-51. |
|
[37] | Annonymous. 2006. United States Pharmacopeia and Formulary (USP 29 - NF 24): Microcrystalline Cellulose. Rockville, MD: United States Pharmacopeia Convention: 3306Y3307. |
|
[38] | Ciupina, V., Zamfirescu, S., and Prodan, G. 2007. Evaluation of mean diameter values using Scherrer equation applied to electron diffraction images. In: Nanotechnology-Toxicological Issues and Environmental Safety, NATO Science for Peace and Security Series: 231-237. |
|
[39] | Poletto, M., Ornaghi, H. L., and Zattera, A. J. 2014. Native cellulose: Structure, characterization and thermal properties, Materials, 7 (9), 6105-6119. |
|
[40] | Hindi, S. S. Z. 2017. Some Crystallographic Properties of Cellulose I as Affected by Cellulosic Resource, Smoothing, and Computation Methods. International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET). 6 (1): 732-752. |
|
[41] | Nishiyama, Y., Langan, P., and Chanzy, H. 2002. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc. 124 (31): 9074-82. |
|
[42] | Krassing, H. A. 1993. Cellulose structure. CRC Press, Boca Raton, FL, USA: 376 pp. |
|
[43] | Fortunati, E., Puglia, D., Monti, M., Peponi, L., Santulli, C., Kenny, J. M., Torre, L., Szcześniak, L., Rachocki, A., and Tritt-Goc, J. 2008. Glass transition temperature and thermal decomposition of cellulose powder. Cellulose. 15 (3): 445-451. |
|
[44] | Szcześniak, L., Rachocki, A., and Tritt-Goc, J. 2008. Glass transition temperature and thermal decomposition of cellulose powder. Cellulose. 15 (3): 445-451. |
|
[45] | Shi, L., Chattoraj, S., and Sun, C. C. 2011. Reproducibility of flow properties of microcrystalline cellulose-Avicel PH102. Powder Tech. 212: 253-257. |
|
[46] | Doelker. E. Comparative compaction properties of various microcrystalline cellulose types and generic products. Drug Dev. Ind. Pharm. 19: 2399-2471. |
|
[47] | Hentzschel, C. M., Sakmann, A., and Leopold, C. S. 2012. Comparison of traditional and novel tableting excipients: physical and compaction properties. Pharm. Dev. Technol., 17, 649-653. |
|
[48] | Jivraj, M., Martini, L.G. and Thomson, C. M. 2000. An overview of the different excipients useful for the direct compression of tablets. Pharm. Sci. Technol. Today. 3: 58-63. |
|
[49] | Anonymous. 2014. Novagel® PC 101 Microcrystalline Cellulose. Available. http://msdsviewer.fmc.com/private/document.aspx?prd=9004-34-6B~~PDF~~MTR~~BPNA~~EN~~1/1/0001%2012:00:00%20AM~~AVICEL%C2%AE%20PH% 20MICROCRYSTALLINE%20CELLULOSE~~ . 2014. |
|