Nanoscience and Nanotechnology Research
ISSN (Print): 2372-4668 ISSN (Online): 2372-4676 Website: Editor-in-chief: Mehrdad Hamidi, Javad Verdi
Open Access
Journal Browser
Nanoscience and Nanotechnology Research. 2017, 4(1), 17-24
DOI: 10.12691/nnr-4-1-3
Open AccessArticle

Microcrystalline Cellulose: The Inexhaustible Treasure for Pharmaceutical Industry

Sherif S. Z. Hindi1,

1Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdullaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia

Pub. Date: February 27, 2017

Cite this paper:
Sherif S. Z. Hindi. Microcrystalline Cellulose: The Inexhaustible Treasure for Pharmaceutical Industry. Nanoscience and Nanotechnology Research. 2017; 4(1):17-24. doi: 10.12691/nnr-4-1-3


Microcrystalline cellulose (MCC) is pure partially depolymerized cellulose synthesized from α-cellulose precursor. The MCC can be synthesized by different processes such as reactive extrusion, enzyme mediated, steam explosion and acid hydrolysis. The later process can be done using mineral acids such as H2SO4, HCl and HBr as well as ionic liquids. The role of these reagents is to destroy the amorphous regions remaining the crystalline domains. The MCC is a valuable additive in pharmaceutical, food, cosmetic and other industries. The MCC is one of the most important tableting excipients due to its outstanding dry binding properties of tablets for direct compression. Different properties of MCC are measured to qualify its suitability for such utilization, namely particle size, density, compressibility index, angle of repose, powder porosity, hydration swelling capacity, moisture sorption capacity, moisture content, crystallinity index, crystallite size and mechanical properties such as hardness and tensile strength. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) or differential scanning calorimetry (DSC) are also important to predict the thermal behavior of the MCC upon heat stresses. The degree of polymerization (DP) of the MCC is typically less than 400, while that for nanocrystalline cellulose is more than 400 extending to several thousands of (1→4)-β-d-glucopyranose units. The MCC particles with size lower than 5µm must not be more than 10% of the total particles. There are several types of the MCC, namely PHs 101, 102, 103, 105, 112, 113, 200, 301 and 302 based on the particle size and subsequent utilization.

microcrystalline cellulose dry granulation wet granulation XRD FTIR XRD TGA DTA MSDS

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Reier, G. E. 2013. Fun facts about Avicel® microcrystalline cellulose also known as cellulose gel. Available:
[2]  Albers, J., Knop, K., and Kleinebudde, P. 2006. Brand-to-brand and batch-to-batch uniformity of microcrystalline cellulose in direct tableting with a pneumohydraulic tablet press. Pharm. Ind. 68: 1420-1428.
[3]  Suzuki, T., and Nakagami, H. 1999. Effect of crystallinity of microcrystalline cellulose on the compactability and dissolution of tablets. Eur. J. Pharm. Biopharm. 47: 225-230.
[4]  El-Sakhawy M., and Hassan, M. L. Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydrate Polymers. 67: 1-10. 2007.
[5]  Chauhan, Y. P., Sapkal, R. S., Sapkal, V. S., and Zamre, G. S. 2009. Microcrystalline cellulose from cotton rags (waste from garment and hosiery industries. International Journal of Chemical Sciences. 7 (2): 681-688.
[6]  Uesu, N. Y., Pineda, E. A., and Hechenleitner, A. A. 2000. Microcrystalline cellulose from soybean husk: effects of solvent treatments on its properties as acetylsalicylic acid carrier. International Journal of Pharmaceutics. 206: 85-96.
[7]  Suvachittanont, S., and Ratanapan, P. 2013. Optimization of Micro Crystalline Cellulose Production from Corn Cob for Pharmaceutical Industry Investment. Journal of Chemistry and Chemical Engineering. 7: 1136-1141.
[8]  Gaonkar, S. M., and Kulkarni, P. R. 1987. Improved method for the preparation of microcrystalline cellulose from water hyacinth. Textile Dyer Printer. 20 (26): 19-22.
[9]  Gaonkar, S. M., and Kulkarni, P. R. 1989. Microcrystalline cellulose from coconut shells. Acta Polymer. 40: 292-293.
[10]  Ilindra, A., and Dhake, J. D. 2008. Microcrystalline cellulose from bagasse and rice straw. Indian Journal of Chemical Technology. 15 (5): 497-499.
[11]  Paralikar, K. M., and Bhatawdekar, S. P. 1988. Microcrystalline cellulose from bagasse pulp. Biological Wastes. 24: 75-77.
[12]  Padmadisastra, Y., and Gonda, I. 1989. Preliminary studies of the development of a direct compression cellulose excipient from bagasse. Journal of Pharmaceutical Sciences. 78 (6): 508-521.
[13]  Shah, D. A., Shah, Y. D., and Trivedi, B. M.. 1993. Production of microcrystalline cellulose from sugar cane bagasse on pilot plant and its evaluation as pharmaceutical adjunct. Research and Industry. 38 (3): 133-137.
[14]  Tang, L.-G., Hon, D. N.-S., Pan, S.-H., Zhu, Y.-U., Wang, Z., and Wang, Z.-Z. 1996. Evaluation of microcrystalline cellulose. I. Changes in ultrastructural characteristics during preliminary acid hydrolysis. Journal of Applied Polymer Science. 59: 483-488.
[15]  Abdullah, A. B. M. 1991. Production of jute microcrystalline cellulose. Journal of Bangladesh Academy of Science. 15 (2): 85-87.
[16]  Kuga, S., and Brown, R. M. 1987. Lattice imaging of ramie cellulose. Polymer Communications Guildford. 28 (11): 311-314.
[17]  Bochek, A. M., Shevchuk, I. L., and Lavrentev, V. N. 2003. Fabrication of microcrystalline and powdered cellulose from short flax fiber and flax straw. Russian Journal of Applied Chemistry. 76 (10): 1679-1682.
[18]  Monschein, M., Reisinger, C., and Nidetzky, B. 2013. Enzymatic hydrolysis of microcrystalline cellulose and pretreated wheat straw: A detailed comparison using convenient kinetic analysis. Bioresource Technology. 128: 679-687.
[19]  Ohwoavworhua, F. O., and Adelakun, T. A. 2010. Non-wood fibre production of microcrystalline cellulose from Sorghum caudatum: Characterisation and tableting properties. Indian Journal of Pharmaceutical Science. 72 (3): 295-301.
[20]  Bhimte, N. A., and Tayade, P. T. 2007. Evaluation of microcrystalline cellulose prepared from sisal fibers as a tablet excipient: A technical note. Association of Pharmaceutical Scientists (AAPS). Pharmaceutical Science and Technology. 8 (1): E56-E62. 2007.
[21]  Hindi, S. S. Z. 2013. Calotropis procera: The miracle shrub in the Arabian Peninsula. International Journal of Science and Engineering Investigations (IJSEI): 2 (16): 48-57.
[22]  Carlin, B. 2008. Direct compression and the role of filler-binders. Augsburger, L. L., Augsburger, and L. L., Hoag, S. W. (Eds.). Pharmaceutical Dosage Forms: Tablets, Informa.: 173-216.
[23]  Thoorens, G., Krier, F., Leclercq, B., Carlin, B., and Evrard, B. 2014. Microcrystalline cellulose, a direct compression binder in a quality by design environment: A review. International Journal of Pharmaceutics. 473 (1-2): 64-72. 2014.
[24]  Hindi, S. S. Z., and Abohassan. R. A. 2016. Cellulosic microfibril and its embedding matrix within plant cell wall. International Journal of Innovative Research in Science. Engineering and Technology. 5 (3): 2727-2734.
[25]  Landín, M., Martínez-Pacheco, R., Gómez-Amoza, J.L., Souto, C., Concheiro, A., and Rowe, R. C. 1993. Effect of batch variation and source of pulp on the properties of microcrystalline cellulose. Int. J. Pharm. 91: 133-141.
[26]  Shlieout, G., Arnold, K., and Muller, G. 2002. Powder and mechanical properties of microcrystalline cellulose with different degrees of polymerization. AAPS PharmSciTech. 3: p. E11.
[27]  Matrosovich, M., Matrosovich, T., Garten, W., and Klenk H.-D. 2006. New low-viscosity overlay medium for viral plaque assays. Virology Journal. 3: 63.
[28]  Turbak, A. F., Snyder, F. W., and Sandberg, K. R. 1983. Microfibrilated cellulose, a new cellulose product: properties, uses, and commercial potential. Journal of Applied Polymer Science, Applied Polymer Symposium, 37: 815-827.
[29]  Herrick, F. W., Casebier, R. L., Hamilton, J. K., and Sandberg, K. R. 1983. Microfibrillated cellulose: morphology and accessibility. Journal of Applied Polymer Science. Applied Polymer Symposium. 37: 797-813.
[30]  Ohwoavworhua, F. O., Kunle, O. O., and Ofoefule, S. I. 2004. Extraction and characterization of microcrystalline cellulose derived from Luffa cylindrica plant. African Journal of Pharmaceutical Research and Development. 1: 1-6.
[31]  Bashaiwoldu, A. B., Podczeck, F., and Newton, J. M. 2004. A study on the effect of drying techniques on the mechanical properties of pellets and compacted pellets. Eur J Pharm Sci. 21(2-3): 119-129.
[32]  Ejikeme, P. M., 2008. Investigation of the physicochemical properties of microcrystalline cellulose from agriculture Wastes I: Orange Mesocarp. Cellulose. 15: 141-147.
[33]  Ansel, C. H., Popovich, G. N., and V. L. Allen. 2005. Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems. New York: Lippincott Williams and Wilkins: pp.189.
[34]  Ohwoavworhua, F. O., Ogah, E., and Kunle, O. O. 2005. Preliminary investigation of physicochemical and functional properties of alpha cellulose obtained from waste paper - A potential pharmaceutical Excipient. Journal of Raw Materials Research. 2: 84-93.
[35]  Train, D. 1958. Some aspects of the property of angle of repose of powders. J Pharm Pharmacol. 10: 127T-34T.
[36]  Kornblum, S. S., and Stoopak, S. B. 1973. A new tablet disintegrant agent: crosslinked polyvinylpyrollidone. J Pharm Sci. 62: 43-51.
[37]  Annonymous. 2006. United States Pharmacopeia and Formulary (USP 29 - NF 24): Microcrystalline Cellulose. Rockville, MD: United States Pharmacopeia Convention: 3306Y3307.
[38]  Ciupina, V., Zamfirescu, S., and Prodan, G. 2007. Evaluation of mean diameter values using Scherrer equation applied to electron diffraction images. In: Nanotechnology-Toxicological Issues and Environmental Safety, NATO Science for Peace and Security Series: 231-237.
[39]  Poletto, M., Ornaghi, H. L., and Zattera, A. J. 2014. Native cellulose: Structure, characterization and thermal properties, Materials, 7 (9), 6105-6119.
[40]  Hindi, S. S. Z. 2017. Some Crystallographic Properties of Cellulose I as Affected by Cellulosic Resource, Smoothing, and Computation Methods. International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET). 6 (1): 732-752.
[41]  Nishiyama, Y., Langan, P., and Chanzy, H. 2002. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc. 124 (31): 9074-82.
[42]  Krassing, H. A. 1993. Cellulose structure. CRC Press, Boca Raton, FL, USA: 376 pp.
[43]  Fortunati, E., Puglia, D., Monti, M., Peponi, L., Santulli, C., Kenny, J. M., Torre, L., Szcześniak, L., Rachocki, A., and Tritt-Goc, J. 2008. Glass transition temperature and thermal decomposition of cellulose powder. Cellulose. 15 (3): 445-451.
[44]  Szcześniak, L., Rachocki, A., and Tritt-Goc, J. 2008. Glass transition temperature and thermal decomposition of cellulose powder. Cellulose. 15 (3): 445-451.
[45]  Shi, L., Chattoraj, S., and Sun, C. C. 2011. Reproducibility of flow properties of microcrystalline cellulose-Avicel PH102. Powder Tech. 212: 253-257.
[46]  Doelker. E. Comparative compaction properties of various microcrystalline cellulose types and generic products. Drug Dev. Ind. Pharm. 19: 2399-2471.
[47]  Hentzschel, C. M., Sakmann, A., and Leopold, C. S. 2012. Comparison of traditional and novel tableting excipients: physical and compaction properties. Pharm. Dev. Technol., 17, 649-653.
[48]  Jivraj, M., Martini, L.G. and Thomson, C. M. 2000. An overview of the different excipients useful for the direct compression of tablets. Pharm. Sci. Technol. Today. 3: 58-63.
[49]  Anonymous. 2014. Novagel® PC 101 Microcrystalline Cellulose. Available. 20MICROCRYSTALLINE%20CELLULOSE~~ . 2014.