Nanoscience and Nanotechnology Research
ISSN (Print): 2372-4668 ISSN (Online): 2372-4676 Website: Editor-in-chief: Mehrdad Hamidi, Javad Verdi
Open Access
Journal Browser
Nanoscience and Nanotechnology Research. 2017, 4(1), 7-16
DOI: 10.12691/nnr-4-1-2
Open AccessArticle

Suitability of Date Palm Leaflets for Sulphated Cellulose Nanocrystals Synthesis

Sherif S. Z. Hindi1,

1Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdullaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia

Pub. Date: February 25, 2017

Cite this paper:
Sherif S. Z. Hindi. Suitability of Date Palm Leaflets for Sulphated Cellulose Nanocrystals Synthesis. Nanoscience and Nanotechnology Research. 2017; 4(1):7-16. doi: 10.12691/nnr-4-1-2


Cellulose nanocrystals (SCNCs) were synthesized from macerated fibers isolated from leaflets of date palm (Phoenix dactylifera L.). The resultant SCNCs were characterized by optical, scanning and transmission electron microscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA). H2SO4-hydrolysis helped isolation of SCNCs with high crystallinity by removing the amorphous regions of the cellulosic microfibril. The SCNCs in an acidic solution were aggregated to form bigger architectures. The SCNCs exhibited a principle sharp peak around 2θ = 21.25° related to the cellulose-I structure. The crystallinity index of the SCNCs was found to be high (85.5%). The average crystallite size of the SCNCs was 2.7 nm. The FTIR results confirmed high purity of the SCNCs conforming to cellulose I. The TGA showed that about 59.13% of the SCNCs mass was lost up to 500°C. Based on the results, the leaflets are suitable precursor for SCNCs synthesis.

acid hydrolysis cellulose nanocrystals FTIR maceration SEM TGA XRD

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Siqueira, G., Bras, J., and Dufresne, A. 2010. Luffa cylindrica as a lignocellulosic resource of fiber, microfibrillated cellulose, and cellulose nanocrystals. BioResources, 5 (2): 727-740.
[2]  Saxena, I. M., Brown, R. M. J. 2005. Cellulose Biosynthesis: Current views and envolving Concepts. Ann. Bot., 96: 9-21.
[3]  de Souza Lima, M. M., Borsali, R., 2004. Rodlike Cellulose microcrystals: Structure, properties and applications. Macromol. Rapid Commun., 25: 771-787.
[4]  Dufresne, A. 2012. Nanocellulose: From Nature to High Performance Tailored Materials. Walter de Gruyter GmbH & Co. KG, 475 pp.
[5]  Habibi, Y., Lucia, L. A., and Rojas, O. J. 2010. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem. Rev. 2010, 110, 3479-3500.
[6]  Peng, Y., Douglas J. Gardner, D. J. and Han, Y. 2012. Drying cellulose nanofibrils: in search of a suitable method. Cellulose. 19 (1): 91-102.
[7]  Hiemenz, P. C., and Rajagopalan, R. 1997. Principles of colloid and surface science. CRC Press, New York.
[8]  Hunter, R. J. 2001. Foundations of colloid science. Oxford Univ. Press, Oxford.
[9]  Pakowski, Z. 2007. Modern methods of drying nanomaterials. Transp Porous Med. 66: 19-27.
[10]  Bondeson, D., Mathew, A. and Oksman, K. 2006. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose. 13: 171-180.
[11]  Beck-Candanedo, S., Roman, M., and Gray, D. G. 2005. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal. Biomacromolecules.6 (2):1048-54.
[12]  Araki, J.; Wada, M.; Kuga, S.; Okano, T. Low properties of microcrystalline cellulose suspension prepared by acid treatement of native cellulose. Colloids Surf. A 1998, 142, 75-82.
[13]  Azizi Samir, M.A.S., Alloin, F. and Dufresne, A. 2005. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules. 6: 612-626.
[14]  Dong, X. M., Revol, J.F., Gray, D. 1998. Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose. 5: 19-32.
[15]  Hindi S. S. Z., A. A. Bakhashwain and A. A. El-Feel. 2011. Physico-chemical characterization of some Saudi lignocellulosic natural resources and their suitability for fiber production. JKAU; Met. Env. Arid Land Agric. Sci. 21(2): 45-55.
[16]  Cranston, E. D. and Gray, D. G. 2008. Birefringence in Spin-Coated Films Containing Cellulose Nanocrystals” Colloids Surf. Physicochem. Eng. Aspects. 325: 44-51.
[17]  Frone, A. N., Panaitrscu, D. M., Donescu, D. 2011. Some aspects concerning the isolation of cellulose micro- and nano- fibers. U.P.B. Sci. Bull., Series B. 73: 133-152.
[18]  Hindi and R. A. Abohassan. 2015. Cellulose triacetate synthesis from cellulosic wastes by heterogeneous reactions. Bioresources. 10 (3): 5030-5048.
[19]  Tang, L. G., Hon, D. N. S., and Zhu, Y. Q. 1997. An investigation in solution acetylation of cellulose by microscopic techniques," Journal of Applied Polymer Science. 64 (10): 1953-1960.
[20]  Park, S., Baker, J. O., El-Himmell, M., Parilla, P. A., and Johnson, D. K. 2010. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels. 3. 10.
[21]  Garvey, C. J., Parker, I. H., and Simon, G. P. 2005. On the interpretation of X-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres”, Macromolecular Chemistry and Physics. 206 (15): 1568-1575, 2005.
[22]  Hult, E. L., Iversen, T., and Sugiyama, J. 2003. Characterization of the supennolecular structure of cellulose in wood pulp fibers. Cellulose. 10 (2): 103-110, 2003.
[23]  Hindi, S. S. Z. 2017. Some Crystallographic Properties of Cellulose I ‎as Affected by Cellulosic Resource, Smoothing, ‎and Computation Methods. International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET). 6 (1): 732-752.
[24]  Fortunati, E., Puglia, D., Monti, M., Peponi, L., Santulli, C., Kenny, J. M. and Torre, L. 2013. Extraction of Cellulose Nanocrystals from Phormium tenax Fibres. Journal of Polymers and the Environment. 21(2): 319-328.
[25]  Kumar, A., Negi, Y. S., Choudhary, V. and Bhardwaj, N. K. 2014. Characterization of Cellulose Nanocrystals Produced by Acid-Hydrolysis from Sugarcane Bagasse as Agro-Waste. Journal of Materials Physics and Chemistry. 2 (1): 1-8.
[26]  El-Nakhlawy, F.S. 2008. Principles of statistics, biostatistical experimental design and analysis”. KAU Pub. Center. KSA.
[27]  Hindi, S. S. Z. and R. A. Abohassan. 2016. Cellulosic microfibril and its embedding matrix within plant cell wall. International Journal of Innovative Research in Science, Engineering and Technology. 5 (3): 2727-2734.
[28]  Hiemenz, P. C., and Rajagopalan, R. 1997. Principles of colloid and surface science. CRC Press, New York.
[29]  Kumar, S., Saha, T., Sharma, S. 2015. Treatment of pulp and paper mill effluents using novel biodegradable polymeric flocculants based on anionic polysaccharides: a new way to treat the waste water. Int Res J Eng Technol. 2 (4): 1-14.
[30]  Chen, W. S., Yu, H. P., Liu, Y. X., Chen, P., Zhang, M. X., and Hai, Y. F. 2011. Individualization of cellulose nanofibres from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr. Polym. 83: 1804-1811.
[31]  Wada, M., Heux, L., and Sugiyama, J. 2004. Polymorphism of cellulose I family: Reinvestigation of cellulose IV. Biomacromolecules. 5: 1385-1391.
[32]  Ciupina, V., Zamfirescu, S., and Prodan, G. 2007. Evaluation of mean diameter values using Scherrer equation applied to electron diffraction images, In: Nanotechnology-Toxicological Issues and Environmental Safety, NATO Science for Peace and Security Series, 231-237.
[33]  Mandal, A., and Chakrabarty, D. 2011. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization”, Carbohydr. Polym. 86: 1291-1299.
[34]  Garside, P., and Wyeth, P. 2003. Identification of cellulosic fibres by FTIR spectroscopy: Thread and single fibre analysis by attenuated total reflectance”, Stud. Conser. 48: 269-275.
[35]  Nelson, M. L., and O’Connor, R. T. 1964a. Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part I. Spectra of lattice types I, II, III and amorphous cellulose”, J. Appl. Polym. Sci., 8, 1311-1324.
[36]  Nelson, M. L., and O’Connor, R. T. 1964b. Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in cellulose I and II, J. Appl. Polym. Sci., 8, 1325-1341.
[37]  Khalil, H., Ismail, H., Rozman, H. and Ahmad, M. 2001. The effect of acetylation on interfacial shear strength between plant fibres and various matrices. Eur. Polym 37, 1037-1045.
[38]  Moran, J.I., Alvarez, V.A., Cyras, V.P., and Vazquez, A., 2008. Extraction of cellulose and preparation of nanocellulose from sisal fibers, Cellulose. 15: 149-159.
[39]  Troedec, M., Sedan, D., Peyratout, C., Bonnet, J., Smith, A., Guinebretiere, R., Gloaguen, V., and Krausz, P. 2008. Influence of various chemical treatments on the composition and structure of hemp fibers”, Composites Part A-Appl. Sci. Manufact. 39: 514-522.
[40]  Zain, N. F. M., Yusop, S. M. and Ishak Ahmad, I. 2014. Preparation and characterization of cellulose and nanocellulose from pomelo (Citrus grandis) albedo. Nutr Food Sci. 5: 1.
[41]  Costa, L. A. de S., Fonseca, A. F., Pereira, F. V. and Druzian, J. I. 2015. Extraction and characterization of cellulose nanocrystals from corn stover. Cellulose Chem. Technol. 49 (2): 127-133.
[42]  Li, J. et al. 2014. Homogeneous isolation of nanocellulose by controlling the shearing force and pressure in microenvironment. Carbohyd. Polym. 113: 388-399.
[43]  Maren, R., and William, T. W. 2004. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecule., 5: 1671-1677.
[44]  Julien, S., Chornet, E., and Overand, R. P.1993. Influence of acid pretreatment (H2SO4, HCl, HNO3) on reaction selectivity in the vacuum pyrolysis of cellulose. J. Analytic. Appl. Pyrol. 27: 25-43.