Nanoscience and Nanotechnology Research
ISSN (Print): 2372-4668 ISSN (Online): 2372-4676 Website: Editor-in-chief: Mehrdad Hamidi, Javad Verdi
Open Access
Journal Browser
Nanoscience and Nanotechnology Research. 2015, 3(1), 6-15
DOI: 10.12691/nnr-3-1-2
Open AccessArticle

Study on Biological Synthesis of Cadmium Sulfide Nanoparticles by Bacillus licheniformis and Its Antimicrobial Properties against Food Borne Pathogens

Aishwarya Shivashankarappa1 and K R Sanjay1,

1Department of Biotechnology, Sri Jayachamarajendra College of Engineering, JSS Technical Institutions Campus, Mysuru

Pub. Date: July 03, 2015

Cite this paper:
Aishwarya Shivashankarappa and K R Sanjay. Study on Biological Synthesis of Cadmium Sulfide Nanoparticles by Bacillus licheniformis and Its Antimicrobial Properties against Food Borne Pathogens. Nanoscience and Nanotechnology Research. 2015; 3(1):6-15. doi: 10.12691/nnr-3-1-2


The green synthesis of cadmium sulfide (CdS) nanoparticles has been regarded as the most promising technique for their prospective applications in biological system. The bacterial strain Bacillus licheniformis has shown to be efficient in synthesizing cadmium sulfide nanoparticles. We report the effect on nanocrystal formation by varying the ratios of cadmium chloride and sodium sulfide ranging from 1:1, 2:1, 3:1 and 4:1 respectively. The resultant CdS nanoparticles was tested for antimicrobial activity against a range of food borne bacteria E coli, Bacillus licheniformis, Pseudomonas aeruginosa, Bacillus cereus and Staphylococcus aureus and fungi Fusarium oxysporum, Aspergillus flavus and Penicillium expansum. The results showed that the CdS nanoparticles were crystalline in nature with size varying from 20-40 nm. The stability of nanoparticles was due to protein interaction which may have played an important role as capping agents. The antimicrobial activity showed that the CdS nanoparticles of ratio 4:1 of cadmium chloride and sodium sulfide at a concentration of 40 mg/ml showed highest zone of inhibition in Psedomonas aeruginosa (26.5±0.70) and Aspergillus flavus (27.8±0.28). The present study explains a simple, cost effective way of nanoparticle synthesis suitable for large scale production. The green synthesis approach extends the horizon of applications to biological systems as an effective medicinal agent.

Cadmium sulfide (CdS) nanoparticles Semiconductors Antimicrobial activity Antifungal activity

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 9


[1]  Alvarez-Peral F J., Zaragoza O., Pedreno Y., and Arguelles J C., “Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans”, Microbiology., 148. 2599-2606. Aug. 2002.
[2]  Bai H, Zhang Z., Guo Y., and Jia W., “Biological synthesis of size-controlled cadmium sulfide nanoparticles using immobilized Rhodobacter sphaeroides Nanoscale Research Letters., 4. 717-723. Apr. 2009.
[3]  Bai H J., Zhang Z M., Guo Y., and Yang G E., “Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris”, Colloids and Surfaces B: Biointerfaces., 70. 142-146. Apr. 2009.
[4]  Bhadwal A S., Tripathi R M., Gupta R K., Kumar N., Singh R P., and Shrivastav A., “Biogenic synthesis and photocatalytic activity of CdS nanoparticles”, RSC Advances., 4. 9484-9490. Dec. 2013.
[5]  Chen G., Yi B., Zeng G., Niu Q., Yan M., Chen A., Du J., Huang J., and Zhang Q., “Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus Phanerochaete chrysosprium”, Colloids and Surfaces B: Biointerfaces.,117. 199-205. May. 2014.
[6]  Fernandez C A., and Wai C M., “Continuous tuning of cadmium sulfide and zinc sulfide nanoparticle size in a water-in-supercritical carbon dioxide microemulsion, Chemistry- A European Journal, 13(20). 5838-5844. Apr. 2007.
[7]  Ghows N and Entezari MH., “ A novel method for the synthesis of cds annoparticleswithout surfactant”, Ultrason Sonochem, 18(1). 269-275. Jan 2011.
[8]  Giertsen E.,“Effects of mouth rinses with triclosan, zinc ions, copolymer and sodium lauryl sulphate combined with fluoride on acid formation by dental plaque invivo”, Caries research., 38. 430-435. Oct. 2004.
[9]  He L., Liu Y., Mustapha A., and Lin M., “Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum, Microbiological Research., 166(3). 207-215. Mar. 2011.
[10]  Hossain S T., and Mukherjee S K., “Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells”, Journal of Hazardous Materials., 260. 1073-1082. Sep. 2013.
[11]  Kalishwaralal K., Deepak V., Pandian S R K., and Gurunathan S., “Biological synthesis of gold nanocubes from Bacillus licheniformis”, Bioresource Technology., 100(21). 5356-5258. Nov. 2009.
[12]  Kim K J., Sung W S., Suh B K., Moon S K., Choi J S., Kim J G., and Lee D G., “Antifungal activity and mode of action of silver nano-particles on Candida albicans”, Biometals., 22(2). 235-242. Apr. 2009.
[13]  Kim K J., Sung W S., Moon S K., Choi J S., Kim J G., and Lee D G., “Antifungal activity of silver nanoparticles on dermatophytes”, Journal of Microbiology and Biotechnology., 18(8). 1482-1484. Apr. 2008.
[14]  Kowshik M., Deshmukh N., Vogel W., Urban J., Kulkarni S K., and Paknikar K M., “Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode”, Biotechnology and Bioengineering., 78(5). 583-588. Jun. 2001.
[15]  Li K G., Chen J T., Bai S S., Wen X., Song S Y., Yu Q., Li J., and Wang Y Q., “Intracellular oxidative stress and cadmium ions release induce cytotoxicity of unmodified cadmium sulfide quantum dots”, Toxicology In Vitro., 23(6). 1007-1013. Sep. 2009.
[16]  Malarkodi C., Chitra K., Rajeshkumar S., Gnanajobitha G., Paulkumar K., Vanaja M., and Annadurai G., “Novel eco-friendly synthesis of titanium oxide nanoparticles by using Planomicrobium sp. and its antimicrobial evaluation”, Der Pharmacia Sinica., 4(3). 59-66. 2013.
[17]  Malarkodi C., Rajeshkumar S., Paulkumar K., Jobitha G G., Vanaja M., and Annadurai G., “Biosynthesis of semiconductor nanoparticles by using sulphur reducing bacteria Serratia nematodiphila”, Advances in Nano Research., 1(2). 83-91. 2013.
[18]  Malarkodi C., Rajeshkumar S., Paulkumar K., Vanaja M., Gnanajobitha G., and Annadurai G., “Biosynthesis and antimicrobial activity of semiconductor nanoparticles against oral pathogens,” Bioinorganic Chemistry and Application, Mar. 2014.
[19]  Mandal D., Bolander M E., Mukhopadhyay D., Sarkar G., and Mukherjee P., “The use of microorganisms for the formation of metal nanoparticles and their application”, Applied Microbial Biotechnology., 69(5). 485-492. Nov. 2006.
[20]  Monte A F G., Dantas N O., Morais P C., and Rabelo D., “Synthesis and characterization of CdS nanoparticles in mesoporous copolymer template”, Brazilian Journal of Physics., 36(2). 427-429. Jun. 2006.
[21]  Mousavi R A., Sepahy A A., and Fazeli M R., “Biosynthesis, purification and characterization of cadmium sulfide nanoparticles using Enterobacteriaceae and their application”, Scientific Research Publication, 2012. [Online]. Available: [Accessed 23 July 2013].
[22]  Nahar L., and Arachchige I U., “Sol-Gel methods for the assembly of metal and semiconductor nanoparticles”, JSM Nanotechnology and Nanomedicne., 1(1). 1004. Aug. 2013.
[23]  Pandian S R K., Deepak V., Kalishwarala K., and Gurunathan S.,“Biologically synthesized fluorescent CdS NPs encapsulated by PHB”, Enzyme and Microbial Technology., 48(4-5). 319-325. Apr. 2011.
[24]  Tyagi C, Sharma A and Kurchania R, “Synthesis of CdS quatum dots using wet chemical co-precipitation method”, Journal of Non-Oxide Glasses., 6(2). 23-26. Mar. 2014.
[25]  Prabhu S., and Poulose E K., “Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications and toxicity effects”, International Nano Letters., 2. 32. Oct. 2012.
[26]  Raheem A E., El-Shanshoury R., Elsilk S E., and Ebeid M E., “Rapid biosynthesis of cadmium sulfide (CdS) nanoparticles using culture supernatants of Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633 and Lactobacillus acidophilus DSMZ 20079T”, African Journal of Biotechnology., 11(31). 7957-7965. Apr. 2012.
[27]  Rajeshkumar S., Ponnanikajamideen M., Malarkodi C., Malini M., and Annadurai G., “Microbe mediated synthesis of antimicrobial semiconductor nanoparticles by marine bacteria”, Journal of Nanostructure in Chemistry., 4. 96. Mar. 2014.
[28]  Ramrakhiani M.,“Luminescence of cadmium sulfide nanoparticles and nanocomposites”, International Journal of Luminescence and Applications., 3(1). 15-22. 2013.
[29]  Ravikumar S., Gokulakrishnan R., and Boomi P., “Invitro antimicrobial activity of the metal oxide nanoparticles against urinary tract infectious bacterial pathogens”, Asian Pacific Journal of Tropical Disease., 85-89. Apr. 2012.
[30]  Rezaei-Zarchi S., javed A., Ghani M J., Soufian S., Firouzabadi F B., Moghaddam A B., and Mirjilili S H., “Comparative study of antimicrobial activities of TiO2 and CdO nanoparticles against the pathogenic strain of Escherichia coli”, Iranian Journal of Pathology., 5(2). 83-89. Spring. 2010.
[31]  Rodriguez-Fragoso P., Reyes-Esparza J., Leon-Buitimea A., and Rodriguez-Fragoso L., “Synthesis, characterization and toxicological evaluation of maltodextrin capped cadmium sulfide nanoparticles in human cell lines and chicken embryos”, Journal of Nanobiotechnology., 10(47). 1-11(47). Dec. 2012.
[32]  Rohovec J., Touskova J., Tousek J., Schauer F., and Kuritka I., “New cadmium sulfide nanoparticle for heterogeneous organic photovoltaic cells”, World Renewable Energy Congress, 2011. [Online] Available: [Accessed 15 March 2014].
[33]  Sanghi R., and Verma P., “A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus”, Chemical Engineering Journal., 155. 886-891. Dec. 2009.
[34]  Shukla M., kumari S., Shukla S., and Shukla R K., “Potent antimicrobial activity of nano CdO synthesized via microemulsion scheme”, Journal of Material and Environmental Science., 3(4). 678-685. 2012.
[35]  Sweeney R Y., Mao C., Gao X., Burt J L., Belcher A M., Georgiou G., and Iverson B L., “Bacterial biosynthesis of cadmium sulfide nanoparticles”, Chemistry and Biology., 11(11). 1553-1559. Nov. 2004.
[36]  Thakkar K N MS., Mhatre S S MS., Parikh R Y., and MS., “Biological synthesis of metallic nanoparticles”, Nanomedicine : Nanotechnology, Biology and Medicine., 6(2). 257-262. Apr. 2009.
[37]  Torimoto T., Reyes J P., Iwasaki K., Pal B., Shibayama T., Sugawara K., Takahashi H., Ohtani B., “Preparation of novel silica-cadmium sulfidecomposite nanoparticles having adjustable void space by size-selective photoetching”, Journal of American Chemical Society., 125(2). 316-317. Jan. 2002.
[38]  Vanaja M., and Annadurai G., “Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity”, Applied Nanoscience., 3(3). 217-223. Jun. 2013.
[39]  Wang G Z., Chen W., Liang C H., Wang Y W., Meng G W., and Zhang L D., “Preparation and characterization of CdS nanoparticles by ultrasonic irradiation”, Inorganic Chemistry Communications., 4(4). 208-210. Apr. 2001.
[40]  Yong K T., Wang Y., Roy I., Rui H., Swihart M T., Law W C., Kwak S K., Liu J., Mahajan S D., and Reynolds J L., “Preparation of Quantum Dot/Drug Nanoparticle Formulations for Tracea-ble Targeted Delivery and Therapy”, Theranostics., 2(7). 681-694. 2012.
[41]  Zhang H., and Chen G., “Potent antimicrobial activities of Ag/TiO2 nanocomposite powders synthesized by a one–pot sol–gel method”, Environmental Science and Technology., 43(8). 2905-2910. Mar. 2009.
[42]  Zhu H., Jiang R, Xiao L., Chang Y., Guan Y., Li X., and Zeng G., “Photocatalytic decolorization and degradation of Congo Red on innovative cross linked chitosan/nano-CdS composite catalyst under visible light irradiation”, Journal of Hazardous Materials., 169(1-3). 933-940. Sep. 2009.