Nanoscience and Nanotechnology Research
ISSN (Print): 2372-4668 ISSN (Online): 2372-4676 Website: http://www.sciepub.com/journal/nnr Editor-in-chief: Mehrdad Hamidi, Javad Verdi
Open Access
Journal Browser
Go
Nanoscience and Nanotechnology Research. 2020, 6(1), 1-14
DOI: 10.12691/nnr-6-1-1
Open AccessReview Article

Functionalized Inorganic Nanoparticles for the Detection of Food and Waterborne Bacterial Pathogens

O.B. Daramola1, , N. Torimiro1, T.O. Fadare1 and R.K. Omole1

1Department of Microbiology, Obafemi Awolowo University, 220005, Ile-Ife, Nigeria

Pub. Date: August 10, 2020

Cite this paper:
O.B. Daramola, N. Torimiro, T.O. Fadare and R.K. Omole. Functionalized Inorganic Nanoparticles for the Detection of Food and Waterborne Bacterial Pathogens. Nanoscience and Nanotechnology Research. 2020; 6(1):1-14. doi: 10.12691/nnr-6-1-1

Abstract

Infections acquired from ingesting contaminated food and water poses an adverse effect on public health and safety, thus affecting nations’ economy. Technical approaches developed over years have contributed adequately to microbial detection in food and water, yet, unveiling spaces for more improvement on early and rapid detection of pathogens. This review highlights different strategy assessing bio-functionalized inorganic nanoparticles towards the detection of pathogens in food and water samples. Conjugates of several bio-receptors and inorganic nanoparticles showed rapid, real-time, repeatability, and appreciable limit of detection in targeted pathogens. A patent referenced in this study established the biocompatibility of bio-functionalized inorganic nanoparticles mechanism. Unique attributes exhibited by bio-functionalized inorganic nanoparticles showed potential and improvement of the existing bio-sensing pathogen detection methods. Each of the identified strategies described showed a promising pathway accommodating the development of simple, and even the fabrication of low-cost materials for easy detection of bacterial pathogens in food and water products.

Keywords:
foodborne infections waterborne infections bacterial detection functionalized inorganic nanoparticles Bioreceptors

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Sun, Z., Du, J., Yan, L., Chen, S., Yang, Z. and Jing, C., Multifunctional Fe3O4@SiO2-Au Satellite Structured SERS Probe for Charge Selective Detection of Food Dyes, ACS Appl. Mater. Interfaces, 8: 3056-3062, 2016.
 
[2]  Wang, C., Wang, J., Li, M., Qu, X., Zhang, K., Rong, Z., Rui, X. and Wang, S., A rapid SERS method for label-free bacteria 1 detection using polyethylenimine-modified Au-coated magnetic microspheres and Au@Ag nanoparticles, Analyst, 2016.
 
[3]  Sayad, A.A., Ibrahim, F., Uddin, S.M., Pei, K.X., Mohktar, M.S., Madou, M. and Thong, K.L., A Microfluidic Lab-on-a-disc Integrated Loop Mediated Isothermal Amplification for Foodborne Pathogen Detection, Sens. Actuators B Chem, 227: 600-609, 2016.
 
[4]  Alahi, E.E. and Mukhopadhyay, S.C., Detection Methodologies for Pathogen and Toxins: A Review, Sensors, 17: 1885, 2017.
 
[5]  Cho, I.H. and Ku S, Current Technical Approaches for the Early Detection of Foodborne Pathogens: Challenges and Opportunities, International Journal of Molecular Sciences, 18: 2078, 2017.
 
[6]  Majumdar, T., Raychaudhuri, U. and Chakraborty, R., Detection of Food Borne Pathogens, Int J Adv Biol Res, 5: 96-107, 2015.
 
[7]  Yamada, K., Choi, W., Lee, I., Cho, B.K. and Jun, S., Rapid Detection of Multiple Foodborne Pathogens Using a Nanoparticle-Functionalized Multi-Junction Biosensor, Biosensors and Bioelectronics, 77: 137-143, 2016.
 
[8]  Hoffmann, S., Bryan, M. and Michael, B., Economic Burden of Major Foodborne Illnesses Acquired in the United States, EIB-140, U.S. Department of Agriculture, Economic Research Service, 2015.
 
[9]  FAO and WHO, The Burden of Foodborne Diseases and the Benefits of Investing in Safe Food, FAO/WHO Second International Conference on Nutrition (ICN2), 2018. http://www.who.int/nutrition/topics/WHO_FAO_announce_ICN2/en.CA2809EN/1/12.18.
 
[10]  Priyanka, S., Shashank, P., Prashant, S. and Krishan, P.S., Nanotechnology and its Role in Pathogen Detection: A short review, Int J Curr Sci, 13: E 9-15, 2014.
 
[11]  Velusamy, V., Arshak, K., Korostynska, O., Oliwa, K. and Adley, C., An Overview of Foodborne Pathogen Detection: In the Perspective of Biosensors, Biotechnol. Adv., 28: 232-254, 2010.
 
[12]  Lazcka, O., Del Campo, F.J. and Munoz, F.X., Pathogen Detection: A Perspective of Traditional Methods and Biosensors, Biosensors and Bioelectronics, 22: 1205-1217, 2007.
 
[13]  Leonard, P., Hearty, S., Brennan, J., Dunne, L., Quinn, J., Chakraborty, T. and O’Kennedy, R., Advances in Biosensors for Detection of Pathogens in Food and Water, Enzyme Microb. Technol., 32: 3-13, 2003.
 
[14]  Lee, K.M., Runyon, M., Herrman, T.J., Phillips, R. and Hsieh, J., Review of Salmonella Detection and Identification Methods: Aspects of Rapid Emergency Response and Food Safety, Food Control, 47: 264-276, 2015.
 
[15]  Leoni, E. and Legnani, P.P., Comparison of selective procedures for isolation and enumeration of Legionella species from hot water systems, Journal of Applied Microbiology, 90(1): 27-33, 2001.
 
[16]  Rozand, C. and Feng, P.C.H., Specificity Analysis of a Novel Phage-derived Ligand in an Enzyme-linked Fluorescent Assay for the Detection of Escherichia coli O157: H7, J. Food Protect., 72: 1078-1081, 2009.
 
[17]  De Giusti, M., Tufi, D., Aurigemma, C., Del Cimmuto, A., Trinti, F., Mannocci, A. and Boccia, A., Detection of Escherichia coli O157 in Raw and Cooked Meat: Comparison of Conventional Direct Culture Method and Enzyme Linked Fluorescent Assay (ELFA), Ital. J. Public Health, 8: 28, 2011.
 
[18]  Song, C., Liu, C., Wu, S., Li, H., Guo, H., Yang, B., Qiu, S., Li, J., Liu, L. and Zeng, H., Development of a Lateral Flow Colloidal Gold Immunoassay Strip for the Simultaneous Detection of Shigella boydii and Escherichia coli O157: H7 in Bread, Milk and Jelly Samples, Food Control, 59: 345-351, 2016.
 
[19]  Chen, C.S. and Durst, R.A., Simultaneous Detection of Escherichia coli O157: H7, Salmonella sp. and Listeria monocytogenes with an Array-based Immunosorbent Assay using Universal Protein G-Liposomal Nano-vesicles, Talanta, 69: 232-238, 2006.
 
[20]  Magliulo, M., Simoni, P., Guardigli, M., Michelini, E., Luciani, M., Lelli, R. and Roda, A., A Rapid Multiplexed Chemi-luminescent Immunoassay for the Detection of Escherichia coli O157: H7, Yersinia enterocolitica, Salmonella typhimurium, and Listeria monocytogenes Pathogen Bacteria, J. Agric. Food Chem., 55: 4933-4939, 2007.
 
[21]  Seng, P., Drancourt, M., Gouriet, F., La Scola, B., Fournier, P., Rolain, J. and Raoult, D., Ongoing revolution in bacteriology: Routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, Clin. Infect. Dis., 49: 543-551, 2009.
 
[22]  Singhal, N., Kumar, M., Kanaujia, P. and Virdi, J., MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis, Front. Microbiol., 6: 791, 2015.
 
[23]  Fakruddin, M., BinMannan, K.S. and Andrews, S., Viable but Nonculturable Bacteria: Food Safety and Public Health Perspective, ISRN Microbiology, Article ID 703813, 2013.
 
[24]  Robben, C., Fister, S., Witte, A.K., Schoder, D., Rossmanith, P. and Mester, P., Induction of the viable but nonculturable state in bacterial pathogens by household cleaners and inorganic salts, Scientific Reports, 8:15132, 2018.
 
[25]  Baraketi, A., Salmieri, S. and Lacroix, M., Foodborne Pathogens Detection: Persevering Worldwide Challenge, Biosensing Technologies for the Detection of Pathogens - A Prospective Way for Rapid Analysis, INTECH, 53-72, 2018.
 
[26]  Rodriguez-Mozaz, S., Lopez de Alda, M.J. and Barceló, D., Biosensors as Useful Tools for Environmental Analysis and Monitoring, Analytical and Bioanalytical Chemistry, 386: 1025-1041, 2006.
 
[27]  Omole, R.K., Torimiro, N., Alayande, S.O. and Ajenifuja, E., Silver nanopartilces synthesized from Bacillus subtilis for detection of deterioration in the post-harvest spoilage of fruit, Sustainable Chemistry and Pharmacy, 10: 33-40, 2018.
 
[28]  Senturk, E., Aktop, S., Sanlibaba, P. and Tezel, B.U., Biosensors: A Novel Approach to Detect Food-borne Pathogens, Appli. Microbiology, 4: 151, 2018.
 
[29]  Bahadır, E.B. and Sezgintürk, M.K., Applications of Commercial Biosensors in Clinical, Food, Environmental, and Bio-threat/Bio-warfare Analyses, Analytical Biochemistry, 478: 107-120, 2015.
 
[30]  Chen, S. and Cheng, Y.F., Biosensors for Bacterial Detection, International Journal of Biosensors and Bioelectronics, 2(6): 197-199, 2017.
 
[31]  Qureshi, A., Kang, W.P., Davidson, J.L. and Gurbuz, Y., Review on Carbon-Derived, Solid-State, Micro and Nano Sensors for Electrochemical Sensing Applications, Diam Relat Mater, 18: 1401-1420, 2009.
 
[32]  Waggoner, P.S., Tan, C.P. and Craighead, H.G., Microfluidic Integration of Nanomechanical Resonators for Protein Analysis in Serum, Sens. Actuators B, 150: 550-555, 2010.
 
[33]  Gruhl, F.J., Rapp, B.E. and Länge, K., Biosensors for Diagnostic Applications, Advances In Biochemical Engineering/Biotechnology, 2012.
 
[34]  Sankiewicz, A., Puzan, B. and Gorodkiewicz, E., Biosensors SPRI as a Diagnostic Tool in the Future, CHEMIK, 68(6): 528-535, 2014.
 
[35]  Neethirajan, S., Ragavan, V., Weng, X. and Chand, R., Biosensors for Sustainable Food Engineering: Challenges and Perspectives, Biosensors, 8: E23, 2018.
 
[36]  Yang, H., Li, H. and Jiang, X., Detection of Foodborne Pathogens Using Bioconjugated Nano-materials, Microfluid Nanofluid, 5: 571-583, 2008.
 
[37]  Yadav, K.K., Singh, J.K., Gupta, N. and Kumar, V., A Review of Nanobioremediation Technologies for Environmental Cleanup: A Novel Biological Approach, Journal of Materials and Environmental Sciences, 8(2): 740-757, 2017.
 
[38]  Lei, J. and Ju, H., Signal Amplification Using Functional Nano-materials for Biosensing, Chem. Soc. Rev., 41(6): 2122-2134, 2012.
 
[39]  Li, F., Li, Y., Feng, J., Dong, Y., Wang, P., Chen, L., Chen, Z., Liu, H. and Wei, Q., Ultrasensitive Amperometric Immunosensor for PSA Detection Based on Cu2O@CeO2-Au Nanocomposites as Integrated Triple Signal Amplification Strategy, Biosensors and Bioelectronics, 87: 630-637, 2017.
 
[40]  Mustafa, F., Hassan, R.Y.A. and Andreescu, S., Multifunctional Nanotechnology-Enabled Sensors for Rapid Capture and Detection of Pathogens, Sensors, 17: 2121, 2017.
 
[41]  LewisOscar, F., Vismaya, S., Arunkumar, M., Thajuddin, N., Dhanasekaran, D. and Nithya, C., Algal Nanoparticles: Synthesis and Biotechnological Potentials, In, Algae - Organisms for Imminent Biotechnology, IntechOpen, 157-182, 2016.
 
[42]  Khanna, P., Kaur, A. and Goyal, D., Algae-based metallic nanoparticles: Synthesis, characterization and applications, Journal of Microbiological Methods, 163: 105656, 2019.
 
[43]  Wang, C., Xu, J., Wang, J., Rong, Z., Li, P., Xiao, R. and Wang, S., Polyethylenimine-Interlayered Silver-Shell Magnetic-Core Microspheres as Multifunctional SERS Substrates, J. Mater. Chem. C, 3: 8684-8693, 2015.
 
[44]  Ye, M., Wei, Z., Hu, F., Wang, J., Ge, G., Hu, Z., Shao, M., Lee, S.T. and Liu, J., Fast Assembling Microarrays of Superparamagnetic Fe3O4@Au Nanoparticle Clusters as Reproducible Substrates for Surface-Enhanced Raman Scattering, Nanoscale, 7: 13427-13437, 2015.
 
[45]  Wang, J., Wu, X., Wang, C., Rong, Z., Ding, H., Li, H., Li, S., Shao, N., Dong, P., Xiao, R. and Wang, S., Facile Synthesis of Au-coated Magnetic Nanoparticles and their Application in Bacteria Detection via a SERS Method, ACS Applied Materials and Interfaces, 2016.
 
[46]  Ayinde, W.B., Gitari, M.W., Muchindu, M. and Samie, A., Biosynthesis of Ultrasonically Modified Ag-MgO Nanocomposite and Its Potential for Antimicrobial Activity, Journal of Nanotechnology, 2018.
 
[47]  Wang, T., Yu, Y. and Chen, D., Plasmonic Indicator by Naked Eyes with Multi-Responsive Polymer Brush as Signal Transducer and Amplifier, Nanoscale, 9: 1925-1933, 2017.
 
[48]  Zhao, Y., Hu, S. and Wang, H., DNA Dendrimer-Streptavidin Nanocomplex: An Efficient Signal Amplifier for Construction of Biosensing Platforms, Anal Chem., 89(12): 6907-6914, 2017.
 
[49]  Tan, W., Wang, K., He, X., Zhao, X.J., Drake, T., Wang, L. and Bagwe, R.P., Bionanotechnology based on silica nanoparticles, Med. Res. Rev., 24(5): 621-638, 2004.
 
[50]  Lin, C.C., Yeh, Y.C., Yang, C.Y., Chen, C.L., Chen, G.F., Chen, C.C. and Wu, Y.C., Selective Binding of Mannose-Encapsulated Gold Nanoparticles to Type 1 Pili in Escherichia coli, J. Am. Chem. Soc., 124: 3508-3509, 2002.
 
[51]  Basu, M., Seggerson, S., Henshaw, J., Jiang, J., Cordona, R., Lefave, C., Boyle, P.J., Miller, A., Pugia, M. and Basu, S., Nano-biosensor development for bacterial detection during human kidney infection: Use of glycoconjugate-specific antibody-bound gold NanoWire arrays (GNWA), Glycoconjugate Journal, 21: 487-496, 2004.
 
[52]  Preechakasedkit, P., Pinwattana, K., Dungchai, W., Siangproh, W., Chaicumpa, W., Tongtawe, P. and Chailapakul, O., Development of a one-step immunochromatographic strip test using gold nanoparticles for the rapid detection of Salmonella typhi in human serum, Biosensors and Bioelectronics, 31(1): 562-566, 2012.
 
[53]  Wen-de, W., Min, L., Ming, C., Li-ping, L., Rui, W., Hai-lan, C., Fu-Yan, C., Qiang, M., Wan-wen, L. and Han-zhong, C., Development of a colloidal gold immunochromatographic strip for rapid detection of Streptococcus agalactiae in tilapia, Biosensors and Bioelectronics, 91: 66-69, 2017.
 
[54]  Baccar, H., Mejri, M.B., Hafaiedh, I., Ktari, T., Aouni, M. and Abdelghani, A., Surface plasmon resonance immunosensor for bacteria detection, Talanta, 82: 810-814, 2010.
 
[55]  Pengsuk, C., Chaivisuthangkura, P., Longyant, S. and Sithigorngul, P., Development and Evaluation of a Highly Sensitive Immunochromatographic Strip Test Using Gold Nanoparticle for Direct Detection of Vibrio cholera O139 in Seafood Samples, Biosensors and Bioelectronics, 42: 229-235, 2013.
 
[56]  Kang, X., Pang, G., Chen, Q. and Liang, X., Fabrication of Bacillus cereus electrochemical immunosensor based on double-layer gold nanoparticles and chitosan, Sensors and Actuators B, 177: 1010-1016, 2013.
 
[57]  Thiramanas, R. and Laocharoensuk, R., Competitive Binding of Polyethyleneimine-Coated Gold Nanoparticles to Enzymes and Bacteria: A Key Mechanism for Low-Level Colorimetric Detection of Gram-positive and Gram-negative Bacteria, Microchim Acta, 2015.
 
[58]  Raj, V., Vijayan, A.N. and Joseph, K., Cysteine Capped Gold Nanoparticles for Naked Eye Detection of Escherichia coli Bacteria in UTI Patients, Sensing and Bio-Sensing Research, 5: 33-36, 2015.
 
[59]  Huang, J., Sun, J., Warden, A.R. and Ding, X., Colorimetric and photographic detection of bacteria in drinking water by using 4-mercaptophenylboronic acid functionalized AuNPs, Food Control, 108, 2020.
 
[60]  Thiruppathiraja, C., Kamatchiammal, S., Adaikkappan, P., Santhosh, D.J. and Alagar, M., Specific detection of Mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor, Analytical Biochemistry, 417: 73-79, 2011.
 
[61]  Wu, W.H., Li, M., Wang, Y., Ouyang, H.X., Wang, L., Li, C.X., Cao, Y.C., Meng, Q.H. and Lu, J.X., Aptasensors for rapid detection of Escherichia coli O157:H7 and Salmonella typhimurium, Nanoscale Research Letters, 7:658, 2012.
 
[62]  Yuan, J., Tao, Z., Yu, Y., Ma, X., Xia, Y., Wang, L. and Wang, Z., A visual detection method for Salmonella typhimurium based on aptamer recognition and nanogold labeling, Food Control, 2014.
 
[63]  Ma, X., Song, L., Zhou, N., Xia, Y. and Wang, Z., A novel aptasensor for the colorimetric detection of S. typhimurium based on gold nanoparticles, International Journal of Food Microbiology, 245: 1-5, 2017.
 
[64]  Oh, S.Y., Heo, N.S., Shukla, S., Cho, H.J., Vilian, A.T.E., Kim, J., Lee, S.Y., Han, Y.K., Yoo, S.M. and Huh, Y.S., Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat, Scientific Reports, 7(1), 2017.
 
[65]  Feng, J., Shen, Q., Wu, J., Dai, Z. and Wang, Y., Naked-eyes detection of Shigella flexneri in food samples based on a novel gold nanoparticle-based colorimetric aptasensor, Food Control, 98: 333-341, 2019.
 
[66]  Ma, X., Xu, X., Xia, Y. and Wang, Z., SERS aptasensor for Salmonella typhimurium detection based on spiny gold nanoparticles, Food Control, 84: 232-237, 2018.
 
[67]  Xu, Z., Bi, X., Huang, Y., Che, Z., Chen, X., Fu, M., Tian, H. and Yang, S., Sensitive colorimetric detection of Salmonella enteric serovar typhimurium based on a gold nanoparticle conjugated bifunctional oligonucleotide probe and aptamer, J Food Saf., e12482, 2018.
 
[68]  Yi, J., Wu, P., Li, G., Xiao, W., Li, L., He, Y., He, Y., Ding, P. and Chen, C., A composite prepared from carboxymethyl chitosan and aptamer-modified gold nanoparticles for the colorimetric determination of Salmonella typhimurium, Microchimica Acta, 186(11), 2019.
 
[69]  Wu, S., Duan, N., He, C., Yu, Q., Dai, S. and Wang, Z., Surface-enhanced Raman spectroscopic-based aptasensor for Shigella sonnei using a dual-functional metal complex-ligated gold nanoparticles dimer, Colloids and Surfaces B: Biointerfaces, 190: 110940, 2020.
 
[70]  El-Boubbou, K., Gruden, C. and Huang, X., Magnetic Glyco-Nanoparticles: A Unique Tool for Rapid Pathogen Detection, Decontamination, and Strain Differentiation, J. Am. Chem. Soc., 129: 13392-13393, 2007.
 
[71]  Valdiglesias, A., Fernandez-Bertolez, N., Kilic, G., Costa, C., Costa, S., Fraga, S., Bessa, M.J., Pasaro, E., Texeira, J.P. and Laffon, B., Colloidal and chemical stabilities of iron oxide nanoparticles in aqueous solutions: the interplay of structural, chemical and environmental drivers, Journal of Trace Elements in Medicine and Biology, 38: 53, 2016.
 
[72]  Sun, Y., Fang, L., Wan, Y. and Gu, Z., Pathogenic Detection and Phenotype Using Magnetic Nanoparticle-Urease Nanosensor, Sensors and Actuators B, 259: 428-432, 2018.
 
[73]  Ju, H., Signal Amplification for Highly Sensitive Immunosensing, Journal of Analysis and Testing, 1(1): 7, 2017.
 
[74]  Lin, Y.S., Tsai, P.J., Weng, M.F. and Chen, Y.C., Affinity Capture Using Vancomycin-Bound Magnetic Nanoparticles for the MALDI-MS Analysis of Bacteria, Anal. Chem., 77: 1753-1760, 2005.
 
[75]  Varshney, M., Yang, L., Su, X.L. and Li, Y., Magnetic Nanoparticle-Antibody Conjugates for the Separation of Escherichia coli O157:H7 in Ground Beef, Journal of Food Protection, 68 (9): 1804-1811, 2005.
 
[76]  Yang, H., Qu, L., Wimbrow, A.N., Jiang, X. and Sun, Y., Rapid detection of Listeria monocytogenes by nanoparticle-based immunomagnetic separation and real-time PCR, International Journal of Food Microbiology, 118: 132-138, 2007.
 
[77]  Shim, W.B., Song, J.E., Mun, H., Chung, D.H. and Kim, M.G., Rapid colorimetric detection of Salmonella typhimurium using a selective filtration technique combined with antibody-magnetic nanoparticle nanocomposites., Analytical and Bioanalytical Chemistry, 406(3): 859-866, 2014.
 
[78]  Mun, S. and Choi, S.J., Detection of Salmonella typhimurium by Antibody/Enzyme Conjugated Magnetic Nanoparticles, BioChip J., 2014.
 
[79]  Park, J.Y., Jeong, H.Y., Kim, M.I. and Park, T.J., Colorimetric Detection System for Salmonella typhimurium Based on Peroxidase-Like Activity of Magnetic Nanoparticles with DNA Aptamers, Journal of Nano-materials, 2015.
 
[80]  Wang, J., Wu, X., Wang, C., Shao, N., Dong, P., Xiao, R. and Wang, S., Magnetically Assisted Surface-Enhanced Raman Spectroscopy for the Detection of Staphylococcus Aureus Based on Aptamer Recognition, ACS Appl. Mater. Interfaces, 7: 20919-20929, 2015.
 
[81]  Li, S., Liu, H., Deng, Y., Lin, L. and He, N., Development of a Magnetic Nanoparticles Microarray for Simultaneous and Simple Detection of Foodborne Pathogens, Journal of Biomedical Nanotechnology, 9(7): 1254-1260, 2013.
 
[82]  Matta, L.L. and Alocilja, E.C., Carbohydrate ligands on magnetic nanoparticles for centrifuge-free extraction of pathogenic contaminants in pasteurized milk, Journal of Food Protection, 81(12): 1941-1949, 2018.
 
[83]  Barak, J.D., Jahn, C.E., Gibson, D.L. and Charkowski, A.O., The role of cellulose and O-antigen capsule in the colonization of plants by Salmonella enterica, Mol. Plant Microbe Interact., 20: 1083-1091, 2007.
 
[84]  Jain, S. and Chen, J., Attachment and biofilm formation by various serotypes of Salmonella as influenced by cellulose production and thin aggregative fimbriae biosynthesis, J. Food Prot., 70: 2473-2479, 2007.
 
[85]  Le, T.N., Tran, T.D. and Kim, M.I., A Convenient Colorimetric Bacteria Detection Method Utilizing Chitosan-Coated Magnetic Nanoparticles, Nano-materials, 10 (92), 2020.
 
[86]  Zhao, X., Hilliard, L.R., Mechery, S.J., Wang, Y., Bagwe, R.P., Jin, S. and Tan, W., A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles, PNAS, 101 (42): 15027-15032, 2004.
 
[87]  Wang, L., Zhao, W., O’Donoghue, M.B. and Tan, W., Fluorescent Nanoparticles for Multiplexed Bacteria Monitoring, Bioconjugate Chem., 18: 297-301, 2007.
 
[88]  Chen, X. and Mao, S.S., Titanium dioxide nano-materials: synthesis, properties, modifications, and applications, Chem. Rev, 107(7): 2891-2959, 2007.
 
[89]  Qiu, J., Zhang, S. and Zhao, H., Recent applications of TiO 2 nano-materials in chemical sensing in aqueous media, Sensors and actuators B: Chemical, 160(1): 875-890, 2011.
 
[90]  Viter, R., Tereshchenko, A., Smyntyna, V., Starodub, N., Yakimova, R., Khranovskyy, V. and Ramanavicius, A., Toward development of optical biosensors based on photoluminescence of TiO2 nanoparticles for the detection of Salmonella, Sensors and Actuators B: Chemical, 2017.
 
[91]  Duan, N., Chang, B., Zhang, H., Wang, Z. and Wu, S., Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor, International Journal of Food Microbiology, 218, 38-43, 2016.
 
[92]  Bao, J., Chen, W., Liu, T., Zhu, Y., Jin, P., Wang, L., Liu, J., Wei, Y. and Li, Y., Bifunctional Au-Fe3O4 Nanoparticles for Protein Separation, ACS Nano, 1: 293-298, 2007.
 
[93]  Qiu, Y., Deng, D., Deng, Q., Wu, P., Zhang, H. and Cai, C., Synthesis of Magnetic Fe3O4-Au Hybrids for Sensitive SERS Detection of Cancer Cells at Low Abundance, J. Mater. Chem. B, 3: 4487-4495, 2015.
 
[94]  Guven, B., Basaran-Akgul, N., Temur, E., Tamer, U. and Boyaci, I.H., SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia coli enumeration, Analyst, 136(4): 740-748, 2011
 
[95]  Xia, S., Yu, Z., Liu, D., Xu, C. and Lai, W., Developing a novel immunochromatographic test strip with gold magnetic bifunctional nanobeads (GMBN) for efficient detection of Salmonella choleraesuis in milk, Food Control, 59: 507e512, 2016.
 
[96]  Eryılmaz, M., Tamer, U. and Boyacı, İ.H., Nanoparticle-assisted pyrrolidonyl arylamidase assay for a culture-free Group A Streptococcus pyogenes detection with image analysis, Talanta, 212: 120781, 2020.
 
[97]  Pang, Y., Wan, N., Shi, L., Wang, C., Sun, Z., Xiao, R. and Wang, S., Dual-recognition surface-enhanced Raman scattering (SERS) biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe3O4@Au, Analytica Chimica Acta, 1077: 288-296, 2019.
 
[98]  Wang, C.W., Gu, B., Liu, Q.Q., Pang, Y.F., Xiao, R. and Wang, S.Q., Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria, International Journal of Nanomedicine, 13, 1159-1178, 2018.
 
[99]  Ji, X., Shao, R., Elliott, A.M., Stafford, R.J., Esparza-Coss, E., Bankson, J.A., Liang, G., Luo, Z.P., Park, K., Markert, J.T. and Li, C., Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide−Silica Core Suitable for Both MR Imaging and Photothermal Therapy, J. Phys. Chem. C, 111: 6245-6251, 2007.
 
[100]  Amagliani, G., Omiccioli, E., del Campo, A., Bruce, I.J., Brandi, G. and Magnani, M., Development of a magnetic capture hybridization-PCR assay for Listeria monocytogenes direct detection in milk samples, Journal of Applied Microbiology, 100: 375-383, 2006.
 
[101]  Bai, Y., Song, M., Cui, Y., Shi, C., Wang, D., Paoli, G.C. and Shi, X., A Rapid Method for the Detection of Foodborne Pathogens by Extraction of a Trace Amount of DNA from Raw Milk Based on Amino-Modified Silica-Coated Magnetic Nanoparticles and Polymerase Chain Reaction, Analytica Chimica Acta, 787: 93-101, 2013.
 
[102]  Bai, Y.L., Shahed-Al-Mahmud, M., Selvaprakash, K., Lin, N.T. and Chen, Y.C., Tail Fiber Protein-Immobilized Magnetic Nanoparticle-Based Affinity Approaches for Detection of Acinetobacter baumannii, Analytical Chemistry, 91(15): 10335-10342, 2019.
 
[103]  Gu, H., Ho, P.L., Tsang, K.W.T., Yu, C.W. and Xu, B., Using biofunctional magnetic nanoparticles to capture Gram-negative bacteria at an ultra-low concentration. Chem. Commun., 1966-1967, 2003.
 
[104]  Chen, Q., Huang, F., Cai, G., Wang, M. and Lin, J., An optical biosensor using immunomagnetic separation, urease catalysis and pH indication for rapid and sensitive detection of Listeria monocytogenes, Sensors and Actuators, B: Chemical, 258: 447-453, 2018.
 
[105]  de Oliveira, T.R., Martucci, D.H. and Faria, R.C., Simple disposable microfluidic device for Salmonella typhimurium detection by magneto-immunoassay, Sensors and Actuators, B: Chemical, 255: 684-691, 2018.
 
[106]  Wu, W., Li, J., Pan, D., Li, J., Song, S., Rong, M., Li, Z., Gao, J. and Lu, J., Gold nanoparticle-based Enzyme-linked Antibody-aptamer Sandwich Assay for Detection of Salmonella typhimurium, ACS Appl. Mater. Interfaces, 2014.
 
[107]  Abbaspour, A., Norouz-Sarvestani, F., Noori, A. and Soltani, N., Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of Staphylococcus aureus, Biosensors and Bioelectronics, 68: 149-155, 2015.
 
[108]  Duan, N., Wu, S., Zhu, C., Ma, X., Wang, Z., Yu, Y. and Jiang, Y., Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus, Analytica Chimica Acta, 723: 1-6., 2012.
 
[109]  Wu, S., Duan, N., Shi, Z., Fang, C. and Wang, Z., Simultaneous Aptasensor for Multiplex Pathogenic Bacteria Detection Based on Multicolor Upconversion Nanoparticles Labels, Anal. Chem., 86: 3100-3107, 2014.
 
[110]  Demangeat, E., Pedrot, M., Dia, A., Bouhnik-Le-Coz, M., Grasset, F., Hanna, K., Kamagate, M. and Cabello-Hurtado, F., Colloidal and chemical stabilities of iron oxide nanoparticles in aqueous solutions: the interplay of structural, chemical and environmental drivers, Environ. Sci.: Nano, 5: 992-1001, 2018.
 
[111]  Pandey, G., Prospects of Nanobioremediation in Environmental cleanup, Oriental Journal of Chemistry, 34(6): 2828-2840, 2018.
 
[112]  Hien-Pham, T.T., Cao, C. and Sim, S.J., Application of Citrate-Stabilized Gold-Coated Ferric Oxide Composite Nanoparticles for Biological Separations, Journal of Magnetism and Magnetic Materials, 320: 2049-2055, 2008.
 
[113]  Burris, K.P. and Stewart, C.N., Fluorescent nanoparticles: Sensing pathogens and toxins in foods and crops, Trends in food science and technology, 28(2): 143-152, 2012.
 
[114]  Varadharajan, D., Soundarapandian, P. and Pushparajan, N., The global science of crab biodiversity from Puducherry coast, south east coast of India, Arthropods, 2(1): 26-35, 2013.
 
[115]  Papadopoulou, C., Economou, E., Zakas, G., Salamoura, C., Dontorou, C. and Apostolou, J., Microbiological and pathogenic contaminants of Seafood in Greece, Journal of Food Quality, 30: 28-42, 2007.
 
[116]  Dib, A.L., Lakhdara, N., Rodriguez, E.E., Kabouia, R., Roldán, E.M., García, M.E., Koutchoukali, H., Guerraichi, L. and Bouaziz, O., Prevalence of microbial contamination of fresh seafood product sold in Constantine, Algeria, Environmental Skeptics and Critics, 3(4): 83-87, 2014.
 
[117]  Li, F., Li, F., Yang, G., Aguilar, Z.P., Lai, W. and Xu, H., Asymmetric polymerase chain assay combined with propidium monoazide treatment and unmodified gold nanoparticles for colorimetric detection of viable emetic Bacillus cereus in milk, Sensors and Actuators, B: Chemical, 255: 1455-1461, 2018.
 
[118]  Ahmad, F., Siddiqui, M., Babalola, O. and Wu, H., Biofunctionalization of nanoparticle assisted mass spectrometry as biosensors for rapid detection of plant associated bacteria, Biosens. Bioelectron., 35: 235-242, 2012.
 
[119]  Alamer, S., Eissa, S., Chinnappan, R., Herron, P. and Zourob, M., Rapid Colorimetric Lactoferrin-Based Sandwich Immunoassay on Cotton Swabs for the Detection of Foodborne Pathogenic Bacteria, Talanta, 185: 275-280, 2018.
 
[120]  Zhao, X., Lin, C., Wang, J. and Oh, D.H., Advances in Rapid Detection Methods for Foodborne Pathogens, J. Microbiol. Biotechnol., 24(3): 297-312, 2014.
 
[121]  Du, J., Wu, S., Niu, L., Li, J., Zhao, D. and Bai, Y., A gold nanoparticles-assisted multiplex PCR assay for simultaneous detection of Salmonella typhimurium, Listeria monocytogenes and Escherichia coli O157:H7, Analytical Methods, 12(2): 212-217, 2020.