Nanoscience and Nanotechnology Research
ISSN (Print): 2372-4668 ISSN (Online): 2372-4676 Website: Editor-in-chief: Mehrdad Hamidi, Javad Verdi
Open Access
Journal Browser
Nanoscience and Nanotechnology Research. 2013, 1(2), 23-26
DOI: 10.12691/nnr-1-2-3
Open AccessArticle

The Effect of Thermal Treatment on Porous Structure of Carbon Materials

V.I. Mandzyuk1, , R.P. Lisovskyy2 and N.I. Nagirna2

1Department of Computer Engineering and Electronics, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine

2Department of Material Science and Novel Technologies, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine

Pub. Date: December 04, 2013

Cite this paper:
V.I. Mandzyuk, R.P. Lisovskyy and N.I. Nagirna. The Effect of Thermal Treatment on Porous Structure of Carbon Materials. Nanoscience and Nanotechnology Research. 2013; 1(2):23-26. doi: 10.12691/nnr-1-2-3


The article investigates the effect of thermal modification of porous carbon material (PCM), obtained by method of hydrothermal carbonization of plant products at a temperature of 750°С, on its porous structure. The implication of the low-temperature porosimetry method has shown that increase of modification temperature (from 300 to 600°С) and time (from 0.25 to 3 h) leads to substantial development of the porous structure of the initial material, accompanied by the doubling of the specific surface area, total volume growth of pores, micro- and mesopores – 2.5, 1.8 and 4.6 times respectively and doubling of the relative proportion of mesopores by the total volume of pores. The pore size distribution (PSD) analysis by means of DFT (Density Functional Theory) allowed to determine that thermal modification most efficiently promotes the development of pores 1.4 and 4 nm in diameter.

porous carbon material thermal modification porous structure pore size distribution

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 2


[1]  Kaneko, K., “Control of supercritical gases with solid nanospace environmental aspects,Studies in Surface Science and Catalysis, 120 (B). 635-657. 1999.
[2]  Sun, J., Rood, M.J., Lizzio, A.A., “Natural gas storage with activated carbon from a bituminous coal,” Gas Separation and Purification, 10 (2). 91-96. 1996.
[3]  Sircar, S., Golden, T.C., Rao, M.B., “Activated carbon for gas separation and storage,” Carbon, 34 (1). 1-12. 1996.
[4]  Martín-Martínez, J.M., Singoredjo, L., Mittelmeijer-Hazeleger, M., Kapteijn, F., Moulijn, J.A., “Selective catalytic reduction of no with NH3 over activated carbons. I: Effect of origin and activation procedure on activity,” Carbon, 32 (5). 897-904. 1994.
[5]  Mehandjiev, D., Bekyarova, E., Khristova, M., “Study of Ni-impregnated active carbon,” Journal of Colloid Interface Science, 192 (2). 440-446. 1997.
[6]  Tarasevych, М.R., Electrochemistry of carbon materials, Nauka, Moskow, 1984, 253.
[7]  Fialkov, А.S., “Carbon in chemical current sources,” Electrochemistry, 36 (4). 389-413. 2000.
[8]  Ogumi, Z., Inaba, M., Carbon anodes, in Advances in Lithium-Ion Batteries, ed. by W. van Schalkwijk and B. Scrosati, Kluwer Academic, Plenum Publishers, 2002, 79-101.
[9]  Novak, P., Goers, D., Spahr, M.E., Carbon materials in lithium-ion batteries, in Carbons for Electrochemical Energy Storage Systems, CRC Press - Taylor and Francis Group, Boca Raton-New York, 2002, 263-328.
[10]  Conway, B.E., Electrochemical supercapacitors. Scientific fundamentals and technological applications, Kluwer Academic Plenum Publishers, New York, 1999, 698.
[11]  Ostafiychuk, B.К., Budzulyak, І.М., Grigorchak, І.І., Myronyuk, І.F., Nanomaterials in electric energy generation and storage devices, Play, Ivano-Frankivsk, 2007, 200.
[12]  Budzulyak, І.М., Маndzyuk V.І., Lisovskyy, R.P., Меrеnа, R.І., Berkeshchuk, М.V., “Electrochemical characteristics of capacitor systems formed on chemical modified carbon base,” Nanosystems, nanomaterials, nanotechnologies, 4 (3). 569-583. 2006.
[13]  Noel, M., Suryanarayanan, V., “Role of carbon host lattices in Li-ion intercalation/de-intercalation processes,” Journal of Power Sources, 111 (2). 193-209. 2002.
[14]  Inagaki, M., Structure and texture of carbon materials, in Carbons for Electrochemical Energy Storage Systems, CRC Press - Taylor and Francis Group, Boca Raton-New York, 2002, 37-76.
[15]  Nagirna, N.I., Mandzyuk, V.I., Lisovskyy, R.P., Rachiy, B.I., Меrеnа, R.I., “Electrochemical insertion of lithium ions into porous carbon materials,” in ХІІth International Conference “Fundamental Problems of Energy Transformation in Lithium Electrochemical Systems”, Krasnodar, 188-190. 2012.
[16]  Mandzyuk, V.I., Nagirna, N.I., Strelchuk, V.V., Budzulyak, S.І., Budzulyak, І.М., Myronyuk, І.F., Rachiy, B.I., “Electric and optical properties of porous carbon material,” Physics and Chemistry of Solid state, 13 (1). 94-101. 2012.
[17]  Ostafiychuk, B.К., Budzulyak, І.М., Rachiy, B.I., Solovko, Y.Т., Mandzyuk, V.I., Lisovskyy, R.P., Меrеnа, R.I., Urubkov, І.V., “Structural transformation of nanoporous carbon at thermal and chemical modifications,” Physics and Chemistry of Solid state, 10 (4). 803-808. 2009.
[18]  Ostafiychuk, B.К., Budzulyak, І.М., Rachiy, B.I., Меrеnа, R.I., Маgоmеtа, О.D., “The effect of chemical treatment on activated carbon material properties,” Physics and Chemistry of Solid state, 9 (3). 609-612. 2008.
[19]  Berkeshchuk, М.V., Budzulyak, І.М., Lisovskyy, R.P., Меrеnа, R.I., “Thermo-chemical and laser modification of nanoporous carbon for electrochemical capacitor electrodes,” Nanosystems, nanomaterials, nanotechnologies, 4 (3). 561-568. 2006.
[20]  Brunauer, S., Emmett, P.H., Teller, E., “Adsorption of gases in multimolecular layers,” Journal of the American Chemical Society, 60 (2). 309-319. 1938.
[21]  Lippens, B.C., de Boer, J.H., “Studies on pore systems in catalysts: V. The t method,” Journal of Catalysis, 4 (3). 319-323. 1965.
[22]  Lozano-Castelló, D., Suárez-Garsía, F., Cazorla-Amoróz, D., Linares-Solano, Á., Porous texture of carbons, in Carbons for Electrochemical Energy Storage Systems, CRC Press - Taylor and Francis Group, Boca Raton-New York, 2002, 115-162.
[23]  Gregg, S., Sing, К., Adsorption, surface area and porosity, Mir, Moskow, 1984, 306.