Materials Science and Metallurgy Engineering
ISSN (Print): 2373-3470 ISSN (Online): 2373-3489 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
Materials Science and Metallurgy Engineering. 2016, 3(1), 8-11
DOI: 10.12691/msme-3-1-2
Open AccessArticle

Microstructural and Thermomechanical Characterization of the Bassar Remelted Steel

Pali KPELOU1, , Gnande DJETELI1, Tiburce Ahouangbe ABOKI2, 3, Ayi Djifa HOUNSI1 and Kossi NAPO1

1Department of physics, University of Lomé, Lomé, Togo

2GMS-LPCS UMR7045 / Chimie Paristech Paris Cedex 05, France

3Palais de la découverte / Universcience, Avenue Franklin Roosevelt, 75008 Paris, France

Pub. Date: August 04, 2016

Cite this paper:
Pali KPELOU, Gnande DJETELI, Tiburce Ahouangbe ABOKI, Ayi Djifa HOUNSI and Kossi NAPO. Microstructural and Thermomechanical Characterization of the Bassar Remelted Steel. Materials Science and Metallurgy Engineering. 2016; 3(1):8-11. doi: 10.12691/msme-3-1-2


This article presents the microstructural and thermomechanical study of the Bassar remetlted steel obtained from melting Bassar as-smelted steel. Bassar as-smelted Steel is steel made by direct reduction of Bandjeli iron ore in a natural draught furnace. Bandjeli village is located in the Bassar Region in the Republic of Togo (West Africa). The Bassar remelted steel was obtained by melting at 1370°C of Bassar as-smelted Steel in a high frequency furnace to eliminate inclusions and pores contained in the Bassar as-smelted Steel. The microstructural and mechanical analyses show that the Bassar remelted steel is homogeneous and contains no defects compared to as-smelted steel. The microstructure of the remelted Steel is formed of ferritic grain whose average size is more than 0.5 mm. Some precipitates are observed in grain and grain boundaries. Heat treatment shows that the average grain size increases as the annealing temperature increases. For the sample annealed at 600°C for one hour, its tensile strength is 338 MPa and the strain rate is 20%. The mechanical properties of the Bassar remelted steel decrease after annealed at 800°C and 950°C for one hour.

Bassar Steel Bassar remelted steel natural draught furnace microstructure

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 5


[1]  Pali KPELOU, G. DJETELI, A. HOUNSI, K. NAPO et T. A. ABOKI ; Etude métallurgique du fer brut traditionnel de Bandjeli ; Rev. Ivoir. Sci. Technol., 20 (2012) 24-34.
[2]  Pali Kpelou, Gnande Djeteli, Ayi Djifa Hounsi, Hans Peter Hahn, Tiburce Ahouangbe Aboki, Kossi Napo. A Reproduction of the Ancient Bandjeli’s Steel-Making Process. International Journal of Materials Science and Applications. Vol. 3, No. 5, 2014, pp. 217-225.
[3]  N. van der Merwe, Production of high carbon steel in the African Iron Age: the Direct Steel Process, Proc. 8th Pan African Cong. of Prehistoric and Quaternary Studies, Leakey, R.E. & Ogot, B.E. (eds) (1980), 331-334.
[4]  Naoki YAMAGUCHI, Yoshinori ANAZAWA, Mitsuru TATE and Minoru SASABE, A Trial to Reproduce an Ancient lron-making Process in Chiba Prefecture, ISIJ International, Vol. 37 (1997), No. 2, pp. 97-101.
[5]  Oleg D. SHERBY; Ultrahigh Carbon Steels, Damascus Steels and Ancient Blacksmiths; ISIJ International, Vol. 39 (1999), No. 7, pp. 637-648.
[6]  Phillip de BARROS, 1986, ‘Bassar: a quantified, chronologically controlled, regional approach to a traditional iron production centre in West Africa’, Africa, vol. 56, no. 2, pp. 148-173.
[7]  Hans Peter HAHN, 1997 : Techniques de la métallurgie du fer au Nord Togo (Collection « Patrimoines » n°6).
[8]  Pali Kpelou ; Caractérisation microstructurale et thermomécanique du produit issu de la réduction directe du minerai de fer au Togo, Thèse de doctorat (2014) Université de Lomé-Togo
[9]  Jang-Sik PARK, Traditional Japanese Sword Making from a Tatara Ingot As Estimated from Microstructural Examination, ISIJ International, Vol. 44 (2004), No. 6, pp. 1040-1048.
[10]  Dirk J. Pons, Gareth Bayley, Christopher Tyree, Matthew Hunt, and Reuben Laurenson; Material Properties of Wire for the Fabrication of Knotted Fences; International Journal of Metals; Volume 2014 (2014).
[11]  Suzanne Degallaix, Caractérisation expérimentale des matériaux : Propriétés physique, thermique et mécanique; Presses polytechniques et universitaires Romandes 1ère Ed. 2007, pp. 153.
[12]  Nobuo NAKADA, Masaru FUJIHARA, Toshihiro TSUCHIYAMA and Setsuo TAKAKI, Effect of Phosphorus on Hall-Petch Coefficient in Ferritic Steel, ISIJ International, Vol. 51 (2011), No. 7, pp. 1169-1173.
[13]  Biausser H. Les caractéristiques de traction : Le livre de l’acier, Ed. Béranger G, henry G., Sanz G, Lavoisier TEC&DOC, Paris 1994, page 225.
[14]  Manabu ETOU, Suguhiro FUKUSHIMA, Tamotsu SASAKI, Youichi HARGUCHI, Super Short Interval Multi-pass Rolling Process for Ultrafine-grained Hot Strip, ISIJ International, Vol. 48 (2008), No. 8, pp. 1142-1147.