Materials Science and Metallurgy Engineering
ISSN (Print): 2373-3470 ISSN (Online): 2373-3489 Website: http://www.sciepub.com/journal/msme Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
Materials Science and Metallurgy Engineering. 2013, 1(1), 1-12
DOI: 10.12691/msme-1-1-1
Open AccessArticle

Computer Simulation of the Polymerizable Oxide Melts Nanostructure Using the Descriptor-Graph Model

Voronova L.I1, 2, , Grigorjeva M.A3, Voronov V.I.1 and Trunov A.S.2

1National Research University Higher School of Economics, Moscow, Russia

2Russian State University for the Humanities, Moscow, Russia

3National Research Centre “Kurchatov Institute”, Russia

Pub. Date: May 03, 2013

Cite this paper:
Voronova L.I, Grigorjeva M.A, Voronov V.I. and Trunov A.S.. Computer Simulation of the Polymerizable Oxide Melts Nanostructure Using the Descriptor-Graph Model. Materials Science and Metallurgy Engineering. 2013; 1(1):1-12. doi: 10.12691/msme-1-1-1

Abstract

The paper describes the method for modeling of nanostructure polymerizable multicomponent oxide melts, which can be used for systems of type Me2O-SiO2 (Me = monovalent cation), with the results of a molecular dynamics simulation as input. The models of the short-range and medium-range orders taking into account dual behavior of monovalent alkali metal cations able to form stable groups with oxygen atoms are built. The melt structure is described with help of heterogeneous descriptors which are constructed using the polymer models and molecular dynamics results. The model is a heterogeneous graph which is built with gradually increasing of mapping levels (from selection heterogeneous graph vertices associated with individual particles, to forming connected components of vertices corresponding polyanionic complexes and rings in the melt. Quantitative calculations of the structure associated characteristics are carried out using the distribution function of graph vertices. We have modeled nanostructure and studied polymerization processes in the system SiO2-Na2O in the range of five compositions by the above method. In particular, we calculated the radial and angular distribution, the distribution of the coordination numbers, the bond lengths, the mole portions of different types of oxygen atoms, the complex anions in the model system taking into account sodium ions, the proportion of flat rings in polyanionic complexes, as well as the average connection factor. The obtained results give a satisfactory agreement with the characteristics in the range having experimental data. A number of results the structure modeling has a scientific novelty and practical significance.

Keywords:
molecular dynamics multicomponent oxide melts slag physical-chemical properties nanostructure model program complex

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 16

References:

[1]  L.V.Woodcoock, C.A.Angell, P.Cheeseman “Molecular dynamics studies of the vitreous state: simple ionic system and silica” J.Chem.Phys., 65(4): 1565-1577, 1976.
 
[2]  Alder B. J., Wainwright T. E. “Studies in Molecular Dynamics. I. General Method”, J.Chem. Phys., 31(2): 459-466, 1959.
 
[3]  R.L.Mozzi, B.E.Warren “Structure of vitreous silica”. Journal of Applied Crystallography, 2 (pt 4): 164-172, 1969.
 
[4]  R.W.Hockney, J.W.Eastwood “Computer simulation using particles”, McGraw-Hill Inc, p.540, 1981.
 
[5]  Soules T.F., Arun K.Varshneya “Molecular Dynamic Calculations of A Sodium Borosilicate Glass Structure”. J.Amer.Ceram.Soc., 64(3): 145-150, 1981.
 
[6]  Mitra S.K. “Molecular dynamics simulation of silicon dioxide glass”, Phyl.Mag., B, 45(5): 529-548, 1982.
 
[7]  Anastasiou N., Fincham D. “Program for dynamics simulations of liquid and solid. II. MDIONS: Rigid ions using the Evald sum”. Comput.Phys.Commun., 25: 159-176, 1982.
 
[8]  Zhang, L., Sun, S., Jahanshahi, S. “Molecular dynamics simulations of silicate slags and slag-solid interfaces”, Journal of Non-Crystalline Solids, 282 (1): 24-29, 2001.
 
[9]  Belashchenko, D.K., Ostrovskii, O.I. “Computer simulation of small noncrystalline silica clusters”, Inorganic Materials, 38(9): 917-921, 2002.
 
[10]  Belashchenko D.K., Ostrovskii O.I. “Computer simulation of the structure of liquid alkaline-earth metal chlorides based on diffraction data”, Russian Journal of Physical Chemistry. 77(12): 1972-1983, 2003.
 
[11]  Voronova L.I., Glubokij V.I., Voronov V.I., Grokhovetskij R.V. “Calculation of self-consistent set of potential parameters for the binary oxide melts MNDO-MD simulation”. Melts, 2(2): 66-74, 1999.
 
[12]  Hong, N.V., Huy, N.V., Hung, P.K. “The structure and dynamic in network forming liquids: Molecular dynamic simulation”, International Journal of Computational Materials Science and Surface Engineering, 5 (1): 55-67, 2012.
 
[13]  Mountjoy, G., Al-Hasni, B.M., Storey, C. “Structural organization in oxide glasses from molecular dynamics modeling”, Journal of Non-Crystalline Solids, 357 (14): 2522-2529, 2011.
 
[14]  Gel'chinskii, B.R., Belashchenko, D.K., Dul'dina, E.V., Lozovskii, E.P. “Computer Model for a Multicomponent Slag-Forming Mixture Melt: Relation between Its Atomic Structure and Physicochemical Properties”, Russian Metallurgy (Metally), (2):148-152, 2011.
 
[15]  Ispas, S., Benoit, M., Jund, P., Jullien, R. “Structural and electronic properties of the sodium tetrasilicate glass Na2Si4O9 from classical and ab initio molecular dynamics simulations”, Physical Review B - Condensed Matter and Materials Physics, 64 (21): 2142061-2142069, 2001.
 
[16]  Sasaki, Y., Urata, H., Ishii, K. “Structural Analysis of Molten Na2O-NaF-SiO2 System by Raman Spectroscopy and Molecular Dynamics Simulation”. ISIJ International, 43(12): 1897-1903, 2003.
 
[17]  Clark, T.M., Grandinetti, P.J., Florian, P., Stebbins, J.F. “Correlated structural distributions in silica glass”, Physical Review B - Condensed Matter and Materials Physics, 70 (6): 064202-1-064202-8, 2004.
 
[18]  Asada, T., Yamada, Y., Ito, K. “The estimation of structural properties for molten CaO-CaF2-SiO2 system by molecular dynamics simulations” . ISIJ, l48 (1): 120-122, 2008.
 
[19]  Takada A. “Molecular dynamics simulation of deformation in SiO2 and Na2O-SiO2 glasses”. Journal of the Ceramic Society of Japan, 116 (1356): 880-884, 2008.
 
[20]  T.Charpentier, S.Ispas, M.Profeta, F.Mauri, C.J. Pickard “First-Principles Calculation of 17O, 29Si, and 23Na NMR Spectra of Sodium Silicate Crystals and Glasses”. J. Phys. Chem. B, 108(13): 4147-4161, 2004.
 
[21]  A.Pedone, T.Charpentier, M.C.Menziani “Multinuclear NMR of CaSiO3 glass: simulation from first-principles”. Phys. Chem. Chem. Phys., 12: 6054-6066, 2010.
 
[22]  F.Angeli, O.Villain, S.Schuller, S.Ispas, T.Charpentier “Insight into sodium silicate glass structural organization by multinuclear NMR combined with first-principles calculations”. Geochimica et Cosmochimica Acta, 75: 2453-2469, 2001.
 
[23]  S.Ispas, T.Charpentier, F.Mauri, D.R. Neuville “Structural properties of lithium and sodium tetrasilicate glasses: Molecular dynamics simulations versus NMR experimental and first-principles data”. Solid State Sciences, 12: 183-192, 2010.
 
[24]  SAGEMD2 http://www.sagemd.com/htmls/aboutsagemd. htm
 
[25]  HyperChem.: http://www.hyper.com
 
[26]  XMD (Molecular Dynamics for Metals and Ceramics).http://xmd.sourceforge.net
 
[27]  Voronova L.I, Voronov V.I. “The Research-Information System "MD-SLAG-MELT". Certificate of state registration of computer programs № 2012615018 from 05.06.2012.
 
[28]  Program complex Nano-MD-Simulation.http://nano-md-simulation.com.
 
[29]  W.H. Zachariesen, J. Am. Ceram. Soc. 54 (1932) 3841.
 
[30]  G.N. Greaves, J. Non-Cryst. Solids 71 (1985) 203.
 
[31]  O.A. Esin “Polymer model of molten salts”. Journal of Physical Chemistry, 50(7): 1885-1836, 1976.
 
[32]  Voronova L.I., Grigorieva M.A. “Information model of physical-chemical melt properties developing for the research complex MD_SLAGMELT”, Interbranch information service, 2: 30-36, 2011.
 
[33]  Voronova L.I., Grigorieva M.A., Voronov V.I. “Nanostruсture computer modeling methods development for multicomponent slag melts”, Fundamental researches, 8(3): 617-622, 2011.
 
[34]  Voronova L.I, Grigorieva M.A, Voronov V.I, Trunov A.S “Program complex «MD-SLAG-MELT» for simulation of nanostructures and properties of multicomponent melts”. Melts, 2: 1-16, 2013.
 
[35]  Schultz, MM, O. Mazurin “Modern views on the structure of glasses and their properties”. Nauka, Leningrad, 1998.
 
[36]  The slag’s atlas. Reference book. Translated from the German. Edited Kulikov I.S. Moscow, Metallurgy, 208 p., 1985.
 
[37]  L.A.Trofimova, L.I.Voronova “The computer simulation of the interaction Me-O (Me=Si, B, Al) in the ionic-covalent model”. Proceedings of the Chelyabinsk Scientific Center, 2(36): 76-81, 2007.
 
[38]  L.A.Trofimova, L.I.Voronova "Design and construction of the potential curves of Si-O0 and Si-O- with the effect modifier in the system Si-O-Na". Proceedings of the Chelyabinsk Scientific Center, 2(36): 82-86, 2007.
 
[39]  Mitra S.K. “Molecular dynamics simulation of silicon dioxide glass”. Phyl.Mag. B, 45(5): 529-548, 1982.
 
[40]  Gaskell P.H., Tarrant I.D: “Refinement of random network model for vitreous silicon dioxide”. Phil.Mag. 42(2): 256-286, 1980.
 
[41]  http://jmol.sourceforge.net.