American Journal of Materials Engineering and Technology
ISSN (Print): 2333-8903 ISSN (Online): 2333-8911 Website: Editor-in-chief: Serge Samper
Open Access
Journal Browser
American Journal of Materials Engineering and Technology. 2015, 3(1), 13-18
DOI: 10.12691/materials-3-1-3
Open AccessReview Article

Dental Ceramics: Part I – An Overview of Composition, Structure and Properties

P. Jithendra Babu1, Rama Krishna Alla2, , Venkata Ramaraju Alluri1, Srinivasa Raju Datla1 and Anusha Konakanchi3

1Department of Prosthodontics, Vishnu Dental College, Bhimavaram, West Godavari, Andhra Pradesh, India

2Department of Dental Materials, Vishnu Dental College, Bhimavaram, West Godavari, Andhra Pradesh, India

3Department of Chemistry, Sasi Merit School, Bhimavaram, West Godavari, Andhra Pradesh, India

Pub. Date: March 24, 2015

Cite this paper:
P. Jithendra Babu, Rama Krishna Alla, Venkata Ramaraju Alluri, Srinivasa Raju Datla and Anusha Konakanchi. Dental Ceramics: Part I – An Overview of Composition, Structure and Properties. American Journal of Materials Engineering and Technology. 2015; 3(1):13-18. doi: 10.12691/materials-3-1-3


Over the last decade, it has been observed that there is an increasing interest in the ceramic materials in dentistry. Esthetically these materials are preferred alternatives to the traditional materials in order to meet the patients’ demands for improved esthetics. Dental ceramics are usually composed of nonmetallic, inorganic structures primarily containing compounds of oxygen with one or more metallic or semi-metallic elements. Ceramics are used for making crowns, bridges, artificial denture teeth, and implants. The use of conservative ceramic inlay preparations, veneering porcelains is increasing, along with all-ceramic complete crown preparations. This article is a review of dental ceramics; divided into two parts such as part I and II. Part I reviews the composition, structure and properties of dental ceramics from the literature available in PUBMED and other sources from the past 50 years. Part II reviews the developments in evolution of all ceramic systems over the last decade and considers the state of the art in several extended materials and material properties.

ceramics porcelains feldspar silica glass firing

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 3


[1]  Rama Krishna Alla, Dental Materials Science, Jaypee Brothers Medical Publishers Pvt Limited, New Delhi, India, 2013, 1st Edition, 333-354.
[2]  Sukumaran VG, Bharadwaj N, Ceramics in Dental Applications, Trends Biomater. Artif. Organs, 20(1), 7-11, Jan 2006.
[3]  Hämmerle C, Sailer I, Thoma A, Hälg G, Suter A, and Ramel C, Dental Ceramics: Essential Aspects for Clinical Practice, Quintessence, Surrey, 2008.
[4]  Ho GW, Matinlinna JP, Insights on porcelain as a dental material. Part I: ceramic material types in dentistry, Silicon, 3(3), 109-15, July 2011.
[5]  Lung CYK, Matinlinna JP, Aspects of silane coupling agents and surface conditioning in dentistry: An overview, Dent Mater, 28(5), 467-77, May 2012.
[6]  Garber DA, Goldstein RE, Porcelain and Composite Inlays and Onlays: Esthetic Posterior Restorations, Quintessence, Chicago, 1994.
[7]  Touati B, Miara P, Nathanson D, Esthetic Dentistry and Ceramic Restorations, Martin Dunitz, London, 1999.
[8]  Badami V, Ahuja B, Biosmart materials: Breaking new ground in dentistry, The Scientific World J, Article ID 986912, 7 pages, Volume Feb 2014.
[9]  Denry I, Holloway JA, Ceramics for dental applications: A Review, Materials, 3, 351-368, Jan 2010.
[10]  Anusavice KJ, Phillip’s Science of Dental Materials, Elsevier, A division of Reed Elsevier India Pvt Ltd, New Delhi, India, 2010, 11th Edition, 655-720.
[11]  Sakaguchi RL, Powers JM, Craig’s Restorative Dental Materials, Elsevier, Mosby, A division of Reed Elsevier India Pvt Ltd, New Delhi, India, 2007, 12th Edition, 443-464.
[12]  J’Obrien W, Dental Materials and their selection, 3rd edition, quintessence Publishing Co. Inc, 2002, 132-155.
[13]  Rashid H, The effect of surface roughness on ceramics used in dentistry: A review of literature. Eur J Dent, 8:571-9, Oct-Dec 2014.
[14]  Denry IL, Recent advances in ceramics for dentistry, Crit Rev Oral Biol Med 7(2):134-143, 1996.
[15]  Shenoy A, Shenoy N, Dental Ceramics: An Update, J Cons Dent, 13(4):195-203, Oct-Dec 2010.
[16]  McLean JW, Hughes TH. The reinforcement of dental porcelain with ceramic oxides. Br Dent J, 119(6):251-267, Sep 1965.
[17]  McLean JW, The science and art of dental ceramics, Volume I: The nature of Dental Ceramics and their clinical use. Quintessence Pub Co., Chicago, 1979.
[18]  Claus H, Rauter H. The structure and microstructure of dental porcelain in relationship to the firing conditions. Int Prosthodont 2(4):376-384, Jui-Aug 1989.
[19]  van Noort R, Introduction to Dental Materials, Mosby, Spain, 1994: 201-214.
[20]  Lacy AM, The chmical nature of dental porcelain, Dent Clin North Am, 21(4): 661-667, Oct 1977.
[21]  Claus H, The structural bases of dental porcelain, Bad Sackingen, Germany: Vita Zhanfabrik, H. Rauter GmBH & Co, 1980.
[22]  Vallittu PK Non-metallic biomaterials for tooth repair and replacement, In Processing and bonding of dental ceramics, Woodhead Publishing Limited, Philadelphia, USA, 2013 125-160.
[23]  Yoshinari M, Dérand T. Fracture strength of all-ceramic crowns. Int J Prosthodont, 7(4), 329-38, Jul-Aug 1994.
[24]  Sobrinho LC, Cattel MJ, Glover RH, Knowles JC, Investigation of the dry and wet fatigue properties of three all-ceramic crown systems. Int J Posthodont, 11(3), 255-62, May-Jun 1988.
[25]  Zhang, Sailer I, Lawn BR, Fatigue of Dental Ceramics, J Dent, 41(12): 1135-47, Dec2013.
[26]  Sailer I, Gottnerb J, Kanelb S, Hammerle CH. Randomized controlled clinical trial of zirconia ceramic and metal-ceramic posterior fixed dental prostheses: a 3-year follow-up. The International Journal of Prosthodontics, 22(6):553-560, Nov-Dec 2009.
[27]  Kelly JR. Clinically relevant approach to failure testing of all-ceramic restorations. The Journal of Prosthetic Dentistry, 81(6):652-661, Jun 1999.
[28]  Malament KA, Socransky SS. Survival of Dicor glass-ceramic dental restorations over 16 years. Part III: effect of luting agent and tooth or tooth-substitute core structure. J Prosthet Dent, 86(5): 511-519, Nov 2001.
[29]  Esquivel-Upshaw JF, Young H, Jones J, Yang M, Anusavice KJ. Four-year clinical performance of a lithia disilicate-based core ceramic for posterior fixed partial dentures. The Int J Prosthodont, 21(2):155-160, Mar-Apr 2008.
[30]  Sax C, Hammerle CH, Sailer I. 10-year clinical outcomes of fixed dental prostheses with zirconia frameworks. Int J Computerized Dent, 14:183-202, 2011.
[31]  Kern M, Sasse M, Wolfart S. Ten-year outcome of three-unit fixed dental prostheses made from monolithic lithium disilicate ceramic. J Am Dent Assoc. 143(3):234-240, Mar 2012.
[32]  Schmitter M, Mussotter K, Rammelsberg P, Gabbert O, Ohlmann B. Clinical performance of longspan zirconia frameworks for fixed dental prostheses: 5-year results. J Oral Rehabil. 39(7):552-557, Jul 2012.
[33]  Denry I. How and when does fabrication damage adversely affect the clinical performance of ceramic restorations? Dent Mater, 29(1):85-96, Jan 2013.
[34]  Morena R, Beaudreau GM, Lockwood PE, Evans AL, Fairhurst CW. Fatigue of dental ceramics in a simulated oral environment, J Dent Res. 65(7):993-997, Jul 1986.
[35]  Fairhurst CW, Lockwood PE, Ringle RD, Twiggs SW. Dynamic fatigue of feldspathic porcelain. Dent Mater, 9(4):269-273, Jul 1993.
[36]  White SN, Zhao XY, Zhaokun Y, Li ZC. Cyclic mechanical fatigue of a feldspathic dental porcelain. Int J Prosthodont. 8(5):413-420, Sep-Oct 1995.
[37]  Studart AR, Filser F, Kocher P, Gauckler LJ. In vitro lifetime of dental ceramics under cyclic loading in water. Biomater. 28(7):2695-2705, Jun 2007.
[38]  Taskonak B, Griggs JA, Mecholsky JJ Jr, Yan JH. Analysis of subcritical crack growth in dental ceramics using fracture mechanics and fractography. Dent Mater. 24(5):700-707, May 2008.
[39]  Gonzaga CC, Cesar PF, Miranda WG Jr, Yoshimura HN. Slow crack growth and reliability of dental ceramics. Dent Mater. 27(4):394-406, Apr 2011.
[40]  Griggs JA, Alaqeel SM, Zhang Y, Miller AW 3rd, Cai Z. Effects of stress rate and calculation method on subcritical crack growth parameters deduced from constant stress-rate flexural testing. Dent Mater. 27(4):364-370, Apr 2011.
[41]  Mitov G, Gessner J, Lohbauer U, Woll K, Muecklich F, Pospiech P. Subcritical crack growth behavior and life data analysis of two types of dental Y-TZP ceramics. Dent Mater, 27(7):684-691, Jul 2011.
[42]  Zhang Y, Lawn BR, Rekow ED, Thompson VP. Effect of sandblasting on the long-term performance of dental ceramics. J Biomed Mater Res Part B: Applied Biomaterials. 71(2):381-386, Nov 2004.
[43]  Zhang Y, Pajares A, Lawn BR. Fatigue and damage tolerance of Y-TZP ceramics in layered biomechanical systems. J Biomed Mater Res Part B: Applied Biomaterials. 71(1):166-171, Oct 2004.
[44]  Bhowmick S, Zhang Y, Lawn BR. Competing fracture modes in brittle materials subject to concentrated cyclic loading in liquid environments: bilayer structures. J Mater Res. 20(10):2792-2800, Oct 2005.
[45]  Zhang Y, Bhowmick S, Lawn BR. Competing fracture modes in brittle materials subject to concentrated cyclic loading in liquid environments: monoliths. J Mater Res. 20(8):2021-2029, Aug 2005.
[46]  Zhang Y, Lawn BR. Fatigue sensitivity of Y-TZP to microscale sharp-contact flaws. J Biomed Mater Res Part B: Applied Biomaterials. 72(2):388-392, Feb 2005.
[47]  Zhang Y, Song JK, Lawn BR. Deep-penetrating conical cracks in brittle layers from hydraulic cyclic contact. J Biomed Mater Res Part B: Applied Biomater. 73(1):186-193, Apr 2005.
[48]  Hermann I, Bhowmick S, Zhang Y, Lawn BR. Competing fracture modes in brittle materials subject to concentrated cyclic loading in liquid environments: trilayer structures. J Mater Res 21(2):512-521, Feb 2006.
[49]  Zhang Y, Lawn BR, Malament KA, Van Thompson P, Rekow ED. Damage accumulation and fatigue life of particle-abraded ceramics. Int J Prosthodontics. 19(5):442-448, Sep-Oct 2006.
[50]  Bhat VS, Nandish BT, Science of Dental Materials Clinical Applications, 1st Ed., shers & Distributers, New Delhi, India, 2006, 366-387.
[51]  Kaminski HD, Easton AD, Dental Materials Research, Nova Science, New York, 2009: 1-21.
[52]  Zortuk M, Bolpaca P, Kilic K, Ozdemir E, Aguloglu S, Effects of fingure pressure applied by dentists during cementation of all-ceramic crowns, Eur J Dent, 4(4):383-388, Oct 2010.
[53]  Gorodovsky S, Zidan O. Retentive strength, disintegration, and marginal quality of luting cements. J Prosthet Dent 68(2):269-274, Aug 1992.
[54]  Sita Ramaraju DV, Rama Krishna Alla, Venkata Ramaraju Alluri, and Raju MAKV, A Review of Conventional and Contemporary Luting Agents Used in Dentistry. American Journal of Materials Science and Engineering, 2(3): 28-35, Aug 2014.
[55]  Dhillon J, Tayal SC, Tayal A, Amita, Kaur AD, Clinical aspects of adhesion of all ceramics: An Update, Ind J Dent Sci, 4(4): 123-126, Oct 2012.
[56]  Borges GA, Goes MF, Platt JA, Moore K, Menezes FH, Vedovato E. Extrusion shear strength between an aluminabased ceramic and three different cements. J Prosthet Dent 98(3):208-215, Sep 2007.
[57]  Ravi RK, Alla RK, Shammas M, Devarhubli A, Dental Composties – A Versatile Restorative material: An Overview, Ind J Dent Sci, 5(5), 111-115, Dec 2013.
[58]  Urabe H, Rossouw PE, Titley KC, Yamin C, Combinations of etchants, composite resins, and bracket systems: An important choice in orthodontic bonding procedures, Angle Orthod, 69(3):267-75, Jun 1999.
[59]  Santos Jr. GC, Santos MJMC, Rizkalla AS, Adhesive Cementation of etchable ceramic esthetic restorations, J Cand Dent Assoc, 75(5): 379-384, Jun 2009.
[60]  Roulet JF, Soderholm KJ, Longmate J, Effects of treatment and storage conditions on ceramic/composite bond strength, J Dent Res, 74(1):381-7, Jan 1995.
[61]  Jost-Brinkmann PG, Drost C, Can S, In-vitro study of the adhesive strengths of brackets on metals, ceramic and composite. Part 1: Bonding to precious metals and amalgam, J Orofacial Orthop, 57(2):76-87, Apr 1996.
[62]  Saracoglu A, Cura C, Cotert HS, Effect of various surface treatment methods on the bond strength of the heat-pressed ceramic samples, J Oral Rehabil, 31(8):790-7, Aug 2004.
[63]  Lacy AM, LaLuz J, Watanabe LG, Dellinges M, Effect of porcelain surface treatment on the bond strength to composites, J Prosthet Dent, 60(3): 288-291, Sep 1988.
[64]  Ersu B, Yuzugullu B, Ruya Yazici A, Canay S, Surface roughness and bond strengths of glass infiltrated alumina ceramics prepared using various surface conditioning method, J Dent, 37(11): 848-56, Nov 2009.
[65]  Guvenc Basaran, Etching enamel for orthodontics with an erbium, chromium: Yttrium-scandium-gallium-garnet laser system, Angles orthodontics, 77(1):117-123, Jan 2007.
[66]  Stangel I, Nathanson D, Hsu CS, Shear strength of the composite bond to etched porcelain, J Dent Res, 66(9): 1460-1465, Sep 1987.
[67]  Paul P, Reddy SND, RK Alla, Rajasigamani K, Chidambaram, Evaluation of shear bond strength of stainless steel brackets bonded to ceramic crownsetched with Er; Cr: YSGG Laser and Hydrofluoric acid: An In vitro study, Brit J Medical Med Res, Accepted for publication, 2015.
[68]  Rochette AL, A ceramic restoration bonded by etched enamel and resin for fractured incisors, J Prosthet Dent, 33(3): 287-293, Mar 1975.
[69]  Albasheer Al Edris, Amal Al Jabr, Robert L. Cooley, Nasser Barghi, SEM evaluation of etch patterns by three etchants on three porcelains, J Prosthet Dent 64(6): 734-9, Dec 1990.
[70]  Calamia JR, Viadyanathan J, Vaidyanathan TK, Hirech SM, Shear bond strength of etched porcelains, J Dent Res 64 (Supple 1):296, Mar 1985.
[71]  Horn HR, Porcelain laminate veneers bonded to etched enamel, Dent Clin North Am, 27(4):671-84, Oct 1983.
[72]  Li R, Ren Y, Han J., Effects of pulsed Nd:YAG laser irradiation on shear bond strength of composit resin bonded to porcelain surface Hua Xi Kou Qiang Yi Xue Za Zhi 18:377-9, 2000.
[73]  Schmage P, Nergiz I, Herrmann W, Oscan M, Influence of various surface-Conditioning methods on the bond strength of metal brackets to ceramic surfaces, Am J Ortho Dentofacial Orthop. 123(5):540-6, May 2003.
[74]  Zelos L, Bevis RR, Keenan KM, Evaluation of ceramic /ceramic interfaces. Am J Orthod Dentofacial Orthop 106(1):10-21, Jul 1994.
[75]  Ghassemi-Tary B, Direct bonding to porcelain: An Invitro study, Am J Orthod Dentofacial Orthop 76(1):80-83, Jul 1979.
[76]  Atala MH, Gul EB, How to Strengthen Dental Ceramics. Int J Dent Sci Res, 3(1):24-27, Jan 2015.
[77]  Zeng K, Odén A, Rowcliffe, D. Flexure Tests on Dental Ceramics, Int J Prosthodont, 9 (5), 434-439, Sep-Oct 1996.
[78]  Anusavice KJ, Shen C, Lee RB. Strengthening of Feldspathic Porcelain by Ion Exchange and Tempering, J Dent Res, 71 (5), 1134-1138, May 1992.
[79]  Zaimoğlu A, Can G, Fixed Prosthodontics. Ankara: Ankara University Publishing, 139-159, 2011.
[80]  Dehoff PH, Anusavice KJ. Tempering Stresses in Feldspathic Porcelain, J Dent Res, 68 (2), 134-138, Feb 1989.
[81]  Conrad HJ, Seong WJ, Pesun, IJ. Current Ceramic Materials and Systems with Clinical Recommendations: A Systematic Review, J Prosthet Dent, 98 (5), 389-404, Nov 2007.
[82]  Tinschert J, Zwez D, Marx R, Anusavice KJ. Structural reliability of alumina-, feldspar-, leucite, mica and zirconia-based ceramics. J Dent, 28(7):529-535, Sep 2000.
[83]  Sundh A, Sjogren G. Fracture resistance of all-ceramic zirconia bridges with differing phase stabilizers and quality of sintering. Dent Mater 22(8):778-784, Aug 2006.