American Journal of Marine Science
ISSN (Print): ISSN Pending ISSN (Online): ISSN Pending Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Marine Science. 2015, 3(1), 22-35
DOI: 10.12691/marine-3-1-3
Open AccessArticle

Variations in Vertical Distribution of the Young of Two Commercial Bivalve Species Depending on Some Factors

Delik D. Gabaev1,

1A.V. Zhirmunsky Institute of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia

Pub. Date: November 06, 2015

Cite this paper:
Delik D. Gabaev. Variations in Vertical Distribution of the Young of Two Commercial Bivalve Species Depending on Some Factors. American Journal of Marine Science. 2015; 3(1):22-35. doi: 10.12691/marine-3-1-3


The results of a long-term study of vertical distribution of the two main fouling species on scallop collectors of Japanese design—Japanese scallop, Mizuhopecten (= Patinopecten) yessoensis, and Pacific mussel, Mytilus trossulus—installed along the Primorsky Krai coast, Sea of Japan (East Sea), are presented in this article. The mussel, associated with Japanese scallop, is in fact its food competitor, which reduces its survival and growth rates. Settlement of scallop larvae begins earlier in shallow waters, i.e. in areas, where upper horizons are wormed up faster. A significant similarity in vertical distribution of juvenile scallop between stations is observed. The positive correlation between depth and vertical distribution of juvenile scallop is recorded most frequently in years with a high water temperature in June; for mussel, this relationship is always negative. Both climatic characteristics of year and position of the station exert influence on the depth of the maximum abundance of the young of the studied mollusks. Exposing scallop collectors at the optimum horizon, 9.5–15 m, promotes increase in the abundance of M. yessoensis and reduction in the abundance of M. trossulus.

Japanese scallop pacific mussel vertical distribution of juveniles climate

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Burton, C.A., Mac Millan, J.T. and Learmouth, M.M. “Shellfish ranching in the UK”, Hydrobiologia, 465, 1-5, 2001.
[2]  Watanabe, T. “The present situation and problems of mariculture in Japan”, Plant. and Soil, 89. 351-369. 1985.
[3]  Xiang, J-H. “Mariculture-related environmantal concerns in th people’s republic of China”, Ecological and Genetic Implication of Aquaculture Activities, 6. 219-228. 2007.
[4]  Focardi, S., Corsi, I., Franchi, E. “Safety issues and sustainable development of European aquaculture: new tools for environmentally sound aquaculture”, Aquaculture International, 13 (1-2). 3-17. Mar. 2005.
[5]  Http://www.pewoceans. org.
[6]  Http://
[7]  Shi, H., Zheng, W., Zhang, X., Zhu, M., Ding, D. “Ecological-economic assesment of monoculture and integrated multi-trophic aquaculture in Sanggou Bay in China”, Aquaculture, 410-411.172-178. Oct. 2013.
[8]  Su, Z., Xiao, H., Yan, Y., Huang, L. “Effect of fouling organisms on food uptake and nutrient release of scallop (Chlamys nobilis, Reese) cultured in Daya Bay”, J. Oceanic Univ. Chin. 7 (1). 93-96. Sept. 2008.
[9]  Belogrudov, E.A. “About some features of settling of larvae on collectors and growth of juvenile scallops Mizuhopecten yessoensis, Jay and other animals in Posyet Bay (sea of Japan)”, in Materials of the Soviet-Japanese symposium on Marine biology, Vladivostok Academic Publishers, 7-8. 1974.
[10]  Gabaev, D.D. “Spatfall larvae of bivalve mollusks and starfishs on collectors in the Posyet Bay (Japanese sea)”, Sov J Mar Biol, 4. 263-268. 1981.
[11]  Silina, А.В., Ovsyannikova, I.I. “The Yezzo scallop and it epibiosis in bottom and hanging cultures in Alekseev Inlent (sea of Japan)”, The bulletin of the Russian Far East Malacological society. Vladivostok Academic Publishers, 4. 103-105. 2000.
[12]  Gabaev, D.D., Taupek, N.J. and Kolotukhina, N.K.Specificity of conditions of existence a trade invertebrate on artificial substrata in evtrofical Amur bay (sea of Japan)”, Rus J Ecology, 36 (4). 370-377. 2005.
[13]  Ross, K.A., Thorpe, J.P. and Brand, A.R. “Biological control of fouling in suspended scallop cultivation”, Aquaculture, 229 (1-4). 99-116. Jan. 2004.
[14]  14. Guenther, J., Southgate, P.C.and deNys, R. “The effect of age and shell size on accumulation of fouling organisms on the Akoya pearl oyster Pinctada fucata (Gould)”, Aquaculture, 253 (1-4). 366. Mar. 2006.
[15]  Claereboudt, M.R., Bureau, D., Cǒté, J. and Himmelman, J.H. “Fouling development and its effect on the growth of juvenile giant scallops (Placopecten magellanicus) in suspended culture”, Aquaculture, 121 (4). 327-342. Apr. 1994.
[16]  Greene, J.K., Grizzle, R.E. “Successional development of fouling communities on open ocean aquaculture fish cages in the western Gulf of Maine, USA”, Aquaculture, 262 (2-4). 289. Febr. 2007.
[17]  VanDolah, R.F., Wendt, P.H., Kuott, D.M. and Wenner, E.L. “Recruitment and community development of sessile fouling asemblages on the continental shelf off South Carolina, Usa estuarine, coast” Shelf Sci, 26 (6). 679-699. 1988.
[18]  18. De Lorenzo, M.E., Pennington, P.L., Chung, K.W., Finnegan, M.C. and Fulton, M.H. “Effect of the antifouling compound, isgarol 1051, on a simulated estuarine salt marsh ecosystem”, Ecotoxicology, 18 (2). 250-258. Febr. 2009.
[19]  Gabaev, D.D., Kolotukhina N.K. “The effect of predation by Nucella (Thais) heyseana on population of Japanse scallop Mizuhopecten yessoensis (Jay)”, Russian Journal of Ecology, 30 (2).133-135. 1999.
[20]  belvin, S., Tremblay, R., Roussy, M. and McGladdery, S.E. “Inoculation experiments to understand mass mortalities in sea scallop, Placopecten magellanicus”, Journal of Shellfish Research, 27 (2). 251-260. Apr. 2008.
[21]  Gabaev, D.D. “Effect of fouling on thr Yezzo scallop Mizuhopecten yessoensis (Jay) in Peter the Great Bay (Sea of Japan)”, Oceanology, 53 (2). 183-191. Mar. 2013.
[22]  Oh, B.S., Jung, Ch.K., Kwon, M-G. and Lee, J.S. “The effect of Yellow Soil on Mortality of Korean scallops, Patinopecten yessoensis at Indor Tank”, Korean J. malacology, 26 (3). 179-183. Sep. 2010.
[23]  Marti´nez, G., Aquilera, C. and mettifogo, L. “Interractive effects of diet and temperature on reproductive conditioning of argopecten puppuratus broadstock”, Aquaculture, 183 (1-2). 149-159. Mar. 2000.
[24]  Robert, R., Gérard, A. “Bivalve hatchery technology: the current situation for the Pacific oyster Crassostrea gigas and the scallop Pecten maximus in France”, Aquat. Living Resource, 12 (2). 121-130. Jan. 1999.
[25]  Gabaev, D. D. “Biological substantiation of new methods cultivation of some trade bivalve molluscs in Primorye”, Ph.D. thesis, 1-129. 1989.
[26]  Shanks, A.L., Brinr, L. “Upwelling, downwelling, and cross-shelf transport of bivalve larvae: test of a hypothesis”, Mar Ecol Prog Ser, 302 (4). 1-12. Nov. 2005.
[27]  Diagle, P.M., Metaxas A. “Vertical distribution of the marine invertebrate larvae in response to thermal stratification in the laboratory”, J. Exp. Mar. Biol. Ecol, 409. 89-98. Sept. 2011.
[28]  Gabaev, D.D. “Laws of settling on collectors of some invertebrate in Posyet Bay”, Biology of shelf zones of the World ocean, The thes SU Conf. Vladivostok Academic Publishers, 54-55. 1982.
[29]  Scavia, D., Field, J., Boesch, D., Buddemeier, R., Burkett, V., et al. “Climate change impacts on U.S. coastal and marine ecosystems”, Estuaries, 25. 149-164. 2002.
[30]  Drinkwater, K.F., Mueter, F., Friendland, K.D., Taylor, M., Hunt Jr, G.L., Hare, J. and Melle, W. “Recent climate forcing and physical oceanographic changes in Northern Hemisphere regions: A review and comparison of four marine ecosystems”, Progress in Oceanology, 81.10-28. Apr. 2009.
[31]  Belkin, I. “Rapid warming of large marine ecosystems”, Progress in Oceanography, 81. 207-213. 2009.
[32]  Belkin, I., Cornillon, P., Sherman, K. “Fronts in large ecosystems”, Progress in Oceanography, 81. 223-236. 2009.
[33]  Byrne, M. ”Impact of ocean warming and ocean acidification on marine invetebrate life history stages: Vulnerability and potential for persistence in a changing ocean”, Oceanography and Marine Biology: An Annual Review, 49:1-42. 2011.
[34]  Ito, S., Kanno, H. and Takahashi, K. “Some problems on culture of the scallop in Mutsu Bay”, Bulletin of Marine Biological Station Asamushi, 15 (2). 89-100. 1975.
[35]  Kasyanov, V.L., Medvedeva, L.A., Jakovlev, S.N. and Jakovlev, J.M. “reproduction of echinodermata and bivalvia molluscs”, Мoskow Academic Publishers, 1980. 1-135.
[36]  Kasyanov, V.L, Krjuchkova, G.A, Kulikova, V.A, and Medvedeva, L.A. “The larvae of the marine bivalve molluscs and echinodermata”, Мoskow Academic Publishers,. 1983. 1-200
[37]  Maru, K., Obara, A., Kikuchi, K. and Okesaku, H. “Studies on the ecology of the scallop Patinopecten yessoensis (Jay). On the diurnal vertical distribution of scallop larvae”, Ibid, 15. 33-37. 1973.
[38]  Heritage, G.D., Bourne, N. “Pacific oyster breeding in British Columbia”, Fish. Mar. Serv. Tech. Report, 882. 1-140. 1977.
[39]  Raby, D., Lagadeuc, Y., Dodson, J. and Mingelfier, M. “Relationship between feeding and vertical distribution of bivalve larvae in stratified and mixed waters”, Mar. Ecol. Prog. Series. 103(3). 275-284. Jan. 1994.
[40]  Revkov, N.K., Shalyapin, V.K. “Features of vertical distribution of larvae Mytilus galloprovincialis and formation of settlements of a mussel in Black sea”, Ecology of marine. 48. 58-62. 1999.
[41]  Bayne B. “Primary and secondary settlement in Mytilus edulis L. (Mollusca)”, J. of Animal Ecology, 33 (3). 513-523. 1964.
[42]  Milejkovsky, С.А. “Ecology and behaviour of larvae of mussels during them stay in a plankton”, Trade bivalve molluscs-mussels and their role in ecosystems, Leningrad Academic Publishers, 86-87. 1979.
[43]  Peteltihina T.S. “Cultivation of mussels in Barents sea”, Biology and cultivation molluscs. The collection of proceedings, Мoskow ASJFO. 60-67. 1987.
[44]  Gallager, S.M., Mainiel, J.L., Manning, D.A. and O’Dor, R.K. “Ontogenetic changes in the vertical distribution of scallop, Placopecten magellanicus, larvae in 9 m deep mesocosms as a function of light, food, and temperature”, in 9 th International Pectinid Workshop, Nanaimo, B.C., Canada, 1. 38-44. 1994.
[45]  Manuel, J.L., Pearse, C.M., Manning, D.A. and O’Dor, R.K. “the response of sea scallop (Placopecten magellanicus) veligers to a weak thermocline in 9-m deep mesocosms”, Marine Biology, 137 (1). 169-175. Aug. 2000.
[46]  Pearce, C.M., Gallager, S.M., Manuel, J.L., Manning, D.A., O’Dor, R.K. and Bourget E. “Settlement of larvae of the giant scallop, Placopecten magellanicus, in 9 m deep mesocosms as a function of temperature stratification, depth, food, and substratum”, Marine Biology, 124 (4). 693-706. Sept. 1996.
[47]  Konev, V.B. “A hydrochemical sketch of Pallada bay in Posyet Bay. Primorye territorial administration on hydrometeorology. A bureau of calculations and inquiries.” Vladivostok. PMGMS. 1990. 1-249.
[48]  Tremblay, M.J., Sinclair, M. “Sea scallop larvae Placopecten magellanicus on Georges Bank: vertical distribution in relation to water column stratification and food”, Mar. Ecol. Progr. Series, 61. 1-15. Mar. 1990 A.
[49]  Tremblay, M.J., Sinclair, M. “Diel vertical migration of sea scallop larvae Placopecten magellanicus in a shallow embayment”, Mar. Ecol. Progr. Series, 67. 19-25. Sep. 1990 b.
[50]  Ma, H., Grassle, J.P. and Chant, R.J. “Vertical distribution of bivalve larvae along a cross-shelf transect during summer upwelling and downwelling”, Marine Biology, 149 (5). 1123-1138. Aug. 2006.
[51]  Shuvalov, V.S. “Character of vertical distribution of larvae of bottom invertebrate”, Laws of distribution and ecology of the coastal biochenosis, Leningrad Academic Publishers, 32-34. 1978.
[52]  Kolganova, T.N., Hrushkova N.G. “To an estimation of a forage reserve of the Yezzo scallops in to lagoon Busse (island of Sakhalin)”, The thes SU Conf. Vladivostok PJSFO, 171. 1983.
[53]  Kuznetsova, I.A. “The characteristic of a food of the Yezzo scallops and edible mussels in conditions of mariculture”, Biology of objects of mariculture. Biology and cultivation invertebrates and seaweeds. Мoskow Academic Publishers, 65-69. 1987.
[54]  Fréchette, M., Gaudet, M. and Vigneau, S. “Estimating optimal population density for intermediate culture of scallops in spat collector bags”, Aquaculture, 183 (1-2). 105-124. Mar. 2000.
[55]  Zvalinsky, V.I, Lobanov, V.B, Zaharkov, S.P. and Tishchenko, P. J. “A chlorophyll, the slowed down fluorescence and primary production in a northwest part Sea of Japan in the autumn of 2000”, Oceanology, 46 (1). 23-32. Jan. 2006.
[56]  Gordienko, A.P., Yerokhin, V.E. and Chaida, V.G. “Research of a forage reserve of mussels in Kandalaksha bay”, Marine Ecology, 47. 84-89. 1998.
[57]  Moiseyev, P.A, Karpevich, A.F. and Romanycheva, O.D. “Marine aquaculture”. Мoskow Agrapromizdat, 1985. 1-253.
[58]  Pereladov, M.V. “To a question on the factors defining survival rate of larvae mussels at settling, and about vertical structure of biotop the Black Sea mussel”, V th All-Union conference on trade invertebrate, Мoskow ASJFO, 132-134. 1990.
[59]  Gabaev, D.D. “Through-cultivation of the trade bivalve molluscs”, Questions of fishery, 9(1) (33). 218-243. 2008.
[60]  Soldatova, I.N., Reznichenko, O.G. and Tsihon-Lukanina, E.A. “Features of fouling installations of mariculture of the Sea scallop”, Oceanology, 25 (3). 513-518. 1985.
[61]  Naidu, K.S., Scaplen, R. “Settlement and survival of the gigant scallop, Placopecten magellanicus, larvae on enclosed polyethylene film collectors”, FAO technical conference on Aquaculture E. Preprint Kyoto, 5. 1976.
[62]  Wallace, J.C., Reinsnes, T.G.”Growth variation with age and water depth in the Iceland scallop (Chlamys islandica, Pectinidae)”, Aquaculture, 41 (2). 141-146. Sept. 1984.
[63]  Aoyama, T. “Culture and propagation of scallop on Mutsu Bay, Aomori Prefecture, and the observation system of the related environmental factors”, Bulletin of the Japanese Society Fisheri & Oceanography, 50 (2). 179-180. 1986.
[64]  Ovsyannikova, I.I. “Distribution of cirrifooting cancers on shell of the Yezzo scallops at cultivation in hanging culture”, Sov J Mar Biol, 4. 71-76. 1989.
[65]  Allen, D.M. “Biological aspects of the calico scallop Argopecten gibbus, determined by spat monitoring”, Nautilus, 93 (4). 107-119. 1979.
[66]  Kashin, I.A., Maslennikov, S.I. “Fouling of constructions for cultivation of the Yezzo scallops”, Sov J Mar Biol, 4. 90-97. 1993.
[67]  Gabaev, D.D., Kucherjavenko, A.V. and Shepel, N.A. “Anthropogenous evtrofication of Posyet Bay sea of Japan by installations of mariculture”, Sov J Mar Biol, 24 (1). 53-62. 1998.
[68]  Gabaev, D.D. “Dynamics of the abundance of som bivalve species in Russian waters of the sea of Japan and its Prognosis”, Oceanology, 49(2). 237-247. Apr. 2009.
[69]  Park, Y.J., Rhee, W.Y. “Spat collection and larvae distribution of the scallop, Patinopecten yessoensis (Jay) in the east sea of Korea”, in 9 th International Pectinid Workshop, Nanaimo, B.C., Canada. 1. 194. 1994.
[70]  Sergeenko, V.A, Shpakova, T.A. and Kulikova, V.A. “Distribution and density of pelagian larvae of the Yezzo scallops (Mizuhopecten yessoensis) in the summer period in Aniva Bay (southern of Island Sakhalin)”, Works of SachSIIPO, 7. 71-82. 2005.
[71]  Razin, A.I. “Sea trade molluscs of southern of Primorski Territory”, proceedings of PSIIFO, 8. 1934. 1-110.
[72]  Skarlato, O.A. “Bivalve molluscs of the Far East seas USSR (group of Dysodonta). A determinant on fauna of the USSR”, Leningrad Academic Publishers, 71. 1960. 1-150.
[73]  Skarlato, O.A. “Folding molluscs of temperate waters of a northwest part of Pacific ocean”, Leningrad Academic Publishers, 1981. 1-480.
[74]  Dulenina, P.A, Dulenin, A.A. “Distribution, dimensional, age structure and growth of Yezzo scallops Mizuhopecten yessoensis (Bivalvia: Pectinidae) in the northwest parts of Tatar strait”, Sov J Mar Biol, 38 (4). 290-297. 2012.