Journal of Translational Medicine and Developmental Disorders
ISSN (Print): ISSN Pending ISSN (Online): ISSN Pending Website: http://www.sciepub.com/journal/jtmdd Editor-in-chief: Kunio Yui MD
Open Access
Journal Browser
Go
Journal of Translational Medicine and Developmental Disorders. 2017, 3(1), 1-10
DOI: 10.12691/jtmdd-3-1-1
Open AccessArticle

Imbalance between Urinary Hexanoyl-lysine and Total Antioxidant Capacity Levels and Plasma Superoxide Dismutase Levels in Individuals with Autism Spectrum Disorder

Kunio Yui1, , Nasoyuki Tanuma2, George Imataka3 and Yohei Kawasaki4

1Department of Cognitive-Behavioral Medicine, Kyoto University Graduate School of Meicine

2Department of Pediatrics, Tokyo Metropolitan Fuchu Medical Center for the Disabled, Tokyo 183-8553, Japan

3Department of Pediatrics, Dokkyo Medical University, 880 Kitakobayashi, Mibu, 321-0293, Tochigi, Japan

4Department of Pharmacoepidemiology, Graduate School of Meicine, University of Kyoto, Kyoto 606-8501 Japan

Pub. Date: June 22, 2017

Cite this paper:
Kunio Yui, Nasoyuki Tanuma, George Imataka and Yohei Kawasaki. Imbalance between Urinary Hexanoyl-lysine and Total Antioxidant Capacity Levels and Plasma Superoxide Dismutase Levels in Individuals with Autism Spectrum Disorder. Journal of Translational Medicine and Developmental Disorders. 2017; 3(1):1-10. doi: 10.12691/jtmdd-3-1-1

Abstract

Bachgraund and aim: The imbalance between oxidants and antioxidants contributes to the pathophysiology of ASD. Methods: We measured the urinary levels of an oxidative stress biomarker, hexanoyl-lysine (HEL), the total antioxidant capacity (TAC) and the DNA methylation biomarker 8-hydroxy-2′-deoxyguanosine (8-OHdG), and the plasma levels of a major antioxidant enzyme, superoxide dismutase (SOD). We examined the relationship between these four biomarkers and social responsiveness in 20 individuals with ASD and in 11 healthy controls. Results: The sex and age distributions (11.4 ± 5.1 years vs. 13.9 ± 6.6 years) were not significantly different between the groups. Social responsiveness was assessed using the Social Responsiveness Scale (SRS). Dietary TAC from chocolate, biscuits and cookies, jam and marmalade was significantly higher in the ASD group than in the control group, although the nutrient intake was not significantly different between the two groups. Urinary TAC levels were significantly lower, but the urinary HEL levels were significantly higher in the ASD group compared to the control group. Urinary 8-OHdG levels and plasma SOD levels were not significantly difference between the groups. SRS scores were significantly higher in the ASD group than in the control group. Plasma SOD levels significantly correlated with the urinary TAC levels. Stepwise regression analysis revealed that urinary TAC and HEL levels may predict differences in the biomarkers and SRS scores between the groups. Discussion and Conclusion: A critical imbalance between the urinary HEL and TAC levels may contribute to impaired social responsiveness in individuals with ASD without the DNA methylation. Plasma SOD levels may affect the impaired antioxidant capacity.

Keywords:
urinary levels of total antioxidant power urinary levels of hel and 8-ohdg levels social responsiveness scale autism spectrum disorder endogenous antioxidant capacity

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Hansen, S.N., Schende, D.E., Parner, E.T., Explaining the increase in the prevalence of autism spectrum disorders: the proportion attributable to changes in reporting practices. JAMA Pediatr. 169: 56-62. 2015.
 
[2]  Picardi, A., Fagnani, C., Medda, E., Toccaceli ,V., Brambilla,. P, Stazi, M.A., (2015) Genetic and environmental influences underlying the relationship between autistic traits and temperament and character dimensions in adulthood. Compr Psychiatry 58: 178-188. 2015.
 
[3]  Banerjee, A., Luong, J.A., Ho, A., Saib, A.O., Ploski, J.E., Overexpression of Homer1a in the basal and lateral amygdala impairs fear conditioning and induces an autism-like social impairment. Mol. Autism 7: 16. 2016.
 
[4]  Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., Kalayci, O., Oxidative stress and antioxidant defense. World Allergy Organ J 5(1): 9-19. 2012.
 
[5]  Lambeth, J.D., Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radic Biol Med 4: 332-347. 2007.
 
[6]  Ranjbar, A., Rashedi, V., Rezaei, M., Comparison of urinary oxidative biomarkers in Iranian children with autism. Res Dev Disabil 5: 2751-2755. 2007. 2014.
 
[7]  Kern, J.K., Jones, A.M., Evidence of toxicity, oxidative stress, and neuronal insult in autism. J Toxicol Environ Health B Crit Rev 9(6):485-499. 2006.
 
[8]  Bartosz, G., Non-enzymatic antioxidant capacity assays: Limitations of use in biomedicine. Free Radic Res 44: 711-720. 2010.
 
[9]  Eroglu, M., Sahin, S., Durukan, B., Ozakpinar, O.B., Erdinc, N., Turkgeldi, L., Sofuoglu, K., Karateke, A., Blood serum and seminal plasma selenium, total antioxidant capacity and coenzyme q10 levels in relation to semen parameters in men with idiopathic infertility. Biol Trace Elem Res 159(1-3):46-51. 2014.
 
[10]  Melnyk, S., Fuchs, G.J., Schulz, E., Lopez, M., Kahler, S.G., Fussell, J.J., Bellando, J., Pavliv, O., Rose, S., Seidel, L., Gaylor, D.W., James, S.J., Metabolic imbalance associated with methylation dysregulation and oxidative damage in children with autism. J Autism Dev Disord 42 (2012) 367-377. 2012.
 
[11]  Ghezzo, A., Visconti, P., Abruzzo, PM., Bolotta, A., Ferreri, C., Gobbi, G., Malisardi, G., Manfredini, S., Marini, M., Nanetti, L., Pipitone, E., Raffaelli Resca, F., Vignini, A., Mazzanti, L., Oxidative Stress and erythrocyte membrane alterations in children with autism: correlation with clinical features. PLoS One 8 (2013) e66418. 2013.
 
[12]  Tokuda, F., Sando, Y., Matsui, H., Yokoyama, T.N., N epsilon-(hexanoyl) lysine, a new oxidative stress marker, is increased in metabolic syndrome, but not in obstructive sleep apnea. Am J Med Sci 338: 127-133. 2009.
 
[13]  Koca, Y., Ozdal, O.L., Celik, M., Unal, S., Balaban, N., Antioxidant activity of seminal plasma in fertile and infertile men. Arch Androl 49: 355-359. 2003.
 
[14]  Yavuzer, H., Yavuzer, S., Cengiz, M., Erman, H., Doventas, A., Balci, H., Erdincler, D..S, Uzun. H., (2016). Biomarkers of lipid peroxidation related to hypertension in aging. Hypertens Res 39: 42-48. 2016.,
 
[15]  Hung, T.H., Lo, L.M., Chiu, T.H., Li, M.J., Yeh, Y.L., Chen, S.F., Hsieh, T.T., A longitudinal study of oxidative stress and antioxidant status in women with uncomplicated pregnancies throughout gestation. Reprod. Sci 7: 401-409. 2010.
 
[16]  Flynn, J.M., Melov, S., SOD2 in mitochondrial dysfunction and neurodegeneration. Free Radic Biol Med 62: 4-12. 2013.
 
[17]  Wang, L., Jia, J., Zhang, J., Li, K., Serum levels of SOD and risk of autism spectrum disorder: A case-control study. Int J Dev Neurosci 51: 12-16. 2016.
 
[18]  Yorbik, O., Sayal, A., Akay, C., Akbiyik, D.I., Sohmen, T., Investigation of antioxidant enzymes in children with autistic disorder. Prostaglands. Leukot Essent Fatty Acids 67: 341-343. 2002.
 
[19]  Sögüt, S., Zoroğlu, S.S., Özyurt, H., Yilmaz, H.R., Ozuğurlu, F., Sivasli, E., Yetkin, O., Yanik, M., Tutkun, H., Savaş, H.A., Tarakçioğlu, M., Akyol, O., Changes in nitric oxide levels and antioxidant enzyme activities may hay a role in the pathophysiolgical mechanisms involved in autism. Clin Chim Acta 33: 111-117. 2003.
 
[20]  Zoroglu, S.S., Armutcu, F., Ozen, S., Gurel, A., Sivasli, E.O., Yetkin Meram, L., Increased oxidative stress and altered activities of erythrocyte free radical scavenging enzymes in autism.Eur. Arch Psychiatry Clin Neurosci 254: 143-147. 2004.
 
[21]  Chauhan, A., Chauhan, V., Brown, W.T., Cohen, I., Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin--the antioxidant proteins. Life Sci 75: 2539-2549. 2004.
 
[22]  Tórsdóttir, G., Hreidarsson, S., Kristinsson, J., Snaedal,. J, Jóhannesson, Y., Ceruloplasmin, superoxide dismutase and copper in autistic patients. Basic Clin Pharmacol Toxicol 96: 146-148. 2005.
 
[23]  Al-Gadani, A., El-Ansary, A., Attas, O., Al-Ayadhi, L., Metabolic biomarkers related to oxidative stress and antioxidant status in Saudi autistic children. Clin Biochem 42: 1032-1040. 2009.
 
[24]  Meguid, N., Dardir, A.A., Abdel-Raouf, E.R., Hashish, A., Evaluation of oxidative stress in autism: defective antioxidant enzymes and increased lipid peroxidation. Biol Trace Elem Res 143: 58-65. 2011.
 
[25]  Parellada, M., Moreno, C., Mac-Dowell, K., Leza, J.C., Giraldez, M., Bailón, C., Castro, C., Miranda-Azpiazu, P., Fraguas, D., Arango, C., Plasma antioxidant capacity is reduced in Asperger syndrome. J Psychiat Res 46: 394-401. 2012.
 
[26]  González-Flores, D., Gamero, E., Garrido, M., Ramírez, R., Moreno, D., Delgado,. J, Valdés, E., Barriga, C., Rodríguez, A.B., Paredes, S.D. Urinary 6-sulfatoxymelatonin and total antioxidant capacity increase after the intake of a grape juice cv. Tempranillo stabilized with HHP. Food Funct 3 (2012) 34-39. 2012.
 
[27]  Scholl, T.O., Leskiw, M., Chen, X., Sims, M., Stein, T.P., Oxidative stress, diet, and the etiology of preeclampsia. Am J Clin Nutr 81: 1390-1396. 2005.
 
[28]  American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders. 5th ed. American Psychiatric association, Washington, DC.
 
[29]  Rutter, M., Le Couteur, A., Lord, C., ADI-R Autism Diagnostic Interview Revised. Manual. Western Psychological Services, Los Angeles. 2003.
 
[30]  Wechsler, D., Wechsler Intelligence Scale for Children-Revised Manual. The Psychological Corporation, New York, NY, 1974.
 
[31]  Wechsler, D., Wechsler Intelligence Scale for Children-Revised Manual. The Psychological Corporation: San Antonio, TX, 1981.
 
[32]  Koyama, T., Kamio, Y., Inada, N., Kurita, H., Sex differences in WISC-III profiles of children with high-functioning pervasive developmental disorders. J Autism Dev Disord 39: 135-141. 2009.
 
[33]  Miyata, R., Tanuma, N., Sakuma, H., Hayashi, H., Circadian Rhythms of Oxidative Stress Markers and Melatonin Metabolite in Patients with Xeroderma Pigmentosum Group A. Oxid Med Cell Longev. 5741517. 2016.
 
[34]  Komatsu, F., Kagawa,. Y, Sakuma, M., Kawabatabe, T., Kaneko, Y., Otgontuya, D., Chimedregzen, U., Narantuya, L., Purvee, B., (2006). Investigation of oxidative stress and dietary habits in Mongolian people, compared to Japanese people. Nutr Metab (Lond) 7: 3, 21. 2006.
 
[35]  Carlsen, M.H,, Halvorsen, B.L., Holte, K., Bøhn, S.K., Dragland, S., Sampson, L., Willey, C., Senoo, H., Umezono, Y., Sanada, C., Barikmo I., Berhe, N., Willett, W.C., Phillips, K.M., Jacobs, D.R. Jr., Blomhoffn, R., The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr. J. 9: 3. 2010.
 
[36]  Pellegrini, N., Serafini, M., Colombi, B., Del Rio, D., Salvatore, S., Bianchi, M., Brighenti, F., Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J Nutr 133: 2812-2819. 2003.
 
[37]  Ministry of Health, Labour, and Welfare, Overview of Dietary Reference Intake for Japanese, Ministry of Health, Labour, and Welfare, Tokyo. 2015.
 
[38]  Kobayashi, Y., Hattori, M., Wada, S., Iwase, H., Kadono, M., Tatsumi, H., Kuwahata, M., Fukui, M., Hasegawa, G., Nakamura, N., Kido, Y. Assessment of daily food and nutrient intake in Japanese type 2 diabetes mellitus patients using dietary reference intakes. Nutrients 5: 2276-2288. 2013.
 
[39]  Okuda, M., Sasaki, S., Bando, N., Hashimoto, M., Kunitsugu, I., Sugiyama, S., Terao, J., Hobara, T., Carotenoid, tocopherol, and fatty acid biomarkers and dietary intake estimated by using a brief self-administered diet history questionnaire for older Japanese children and adolescents. J. Nutr. Sci. Vitaminol. (Tokyo) 55: 231-241. 2009.
 
[40]  González-Flores, D., Gamero, E., Garrido, M., Ramírez, R., Moreno, D., Delgado, J., Valdés, E., Barriga, C., Rodríguez, A.B., Paredes, S.D., Urinary 6-sulfatoxymelatonin and total antioxidant capacity increase after the intake of a grape juice cv. Tempranillo stabilized with HHP. Food Funct 3: 34-39. 2012.
 
[41]  Roura, E., Almajano, M.P., Bilbao, M.L., Andrés-Lacueva, C., Estruch, R., Lamuela-Raventós, R.M., Human urine: epicatechin metabolites and antioxidant activity after cocoa beverage intake. Free Radic Res 41: 943-949. 2007.
 
[42]  Kobayashi, S., Murakami, K., Sasaki, S., Uenish, K., Yamasaki, M., Hayabuchi, H., Goda, T., Oka, J., Baba, K., Ohki, K., Watanabe, R., Sugiyamama, Y., Dietary total antioxidant capacity from different assays in relation to serum C-reactive protein among young Japanese women. Nutr J 11: 91. 2012.
 
[43]  MatsuI, Y., Satoh, K., Miyazaki, T., Shirabe, S., Atarashi, R., Mutsukura, K., Satoh, A., Kataoka. Y., Nishida, N., High sensitivity of an ELISA kit for detection of the gamma-isoform of 14-3-3 proteins: usefulness in laboratory diagnosis of human prion disease. BMC Neurol 11: 120. 2011.
 
[44]  Boonla, C., Wunsuwan, R., Tungsanga, K., Tosukhowong, P., Urinary 8-hydroxydeoxyguanosine is elevated in patients with nephrolithiasis. Urol Res 35: 185-191. 2007.
 
[45]  Wang, J., Lee, L.C., Chen, Y.S., Hsu, J.W., Assessing autistic traits in a Taiwan preschool population: cross-cultural validation of the Social Responsiveness Scale (SRS). J Autism Dev Disord 42: 2450-2459. 2012.
 
[46]  Constantino, J.N., Przybeck, T., Friesen, D., Todd, R.D., Reciprocalsocial behavior in children with and without pervasive developmental disorders. J Dev Behav Pediatr 21: 2-11. 2009.
 
[47]  Di Martino, A., Shehzad, Z., Kelly, C., Roy, A.K., Gee, D.G., Uddin, L.Q., Gotimer, K., Klein, D.F., Castellanos, F.X., Milham, M.P., Relationship between cingulo-insular functional connectivity and autistic traits in neurotypical adults. Am J Psychiatry 166: 891-899. 2009.
 
[48]  Singh, S.K., Connors,. SL., Macklin, E.A., Smith, K.D., Fahey, J.W., Talalay, P., Zimmerman, A.W., Sulforaphane treatment of autism spectrum disorder (ASD). Proc Natl Acad Sci USA 111: 15550-15555. 2014.
 
[49]  Constantino, J.N., Davis, S..A, Todd, R.D., Schindler, M.K., Gross, M.M., Brophy, S.L., Metzger, L.M., Shoushtari, C.S., Splinter,. R, Reich, W., Validation of a brief quantitative measure of autistic traits: comparison of the social responsiveness scale with the autism diagnostic interview-revised. J Autism Dev Disord 33: 427-433. 2003.
 
[50]  Balcerczyk, A., Bartosz, G., Thiols are main determinants of total antioxidant capacity of cellular homogenates. Free Radic Res 37: 537-541. 2003.
 
[51]  Ming, X., Stein, T.P., Brimacombe, M., Johnson, W.G., Lambert, G.H., Wagner, G.C., Increased excretion of a lipid peroxidation biomarker in autism. Prostaglandins Leukot. Essent Fatty Acids 73: 379-384. 2005.
 
[52]  Collins, A.R., Assays for oxidative stress and antioxidant status: applications to research into the biological effectiveness of polyphenols. Am J Clin Nutr 81: 261S-267S. 2005.
 
[53]  Song, F., Jia, W., Yao, Y., Hu, Y., Lei, L., Lin, J., Sun, X., Liu, L., Oxidative stress, antioxidant status and DNA damage in patients with impaired glucose regulation and newly diagnosed Type 2 diabetes. Clin Sci (Lond) 112: 599-606. 2007.
 
[54]  Ahmed, R.G., Is there a balance between oxidative stress and antioxidant defense system during development? Medical Journal of Islamic World Academy of Sciences 15: 55-63. 2005.
 
[55]  James, S.J., Rose,. S, Melnyk, S., Jernigan, S., Blossom, S., Pavliv, O., Gaylor, D.W., Cellular and mitochondrial glutathione redox imbalance in lymphoblastoid cells derived from children with autism. FASEB J 23: 2374-2383. 2009.
 
[56]  Ghanizadeh, A., Akhondzadeh, S., Hormozi, M., Makarem, A., Abotorabi-Zarchi, M., Firoozabadi, A., Glutathione-related factors and oxidative stress in autism, a review. Curr Med Chem 19: 4000-4005. 2012.
 
[57]  Nardone, S., Sams, D.S., Reuveni, E., Getselter, D., Oron, O., Karpuj, M., Elliott, E., DNA methylation analysis of the autistic brain reveals multiple dysregulated biological pathways. Transl Psychiatry. 2;4:e433. 2014.
 
[58]  Nathan, F.M., Singh, V.A., Dhanoa, A., Palanisamy, U.D., Oxidative stress and antioxidant status in primary bone and soft tissue sarcoma. BMC Cancer 11: 382. 2011.
 
[59]  Yu, C., Chuan-ji, H., Chen-jing, C., Peng-li, L., Le-xin, W., Hua-shi, G., Huan-ting, L., Yu, C., Chuan-ji, Ha H., Chen-jing, W., Peng-li, L., Le-xin, W., Hua-sh, G., Huan-ting, L., Urinary excretion of L-carnitine, acetyl-L-carnitine, propionyl-L-carnitine and their antioxidant activities after single dose administration of L-carnitine in healthy subjects. Braz J Pharm Sci 49: 185-192. 2013.
 
[60]  Martínez-Cengotitabengoa, M., Micó, J.A., Arango, C., Castro-Fomieles, J., Graell, M., Payá, B., Leza, L.C., Zorrilla, I., Parellada. M., López, M.P., Baeza, I., Moreno, C., Rapado-Castro, M., González-Pinto, A., (2014) Basal low antioxidant capacity correlates with cognitive deficits in early onset psychosis. A 2-year follow-up study. Schizophr Res 156: 23-29. 2014.
 
[61]  Yuan, L., Liu, J., Ma, W., Dong, L., Wang, W., Che, R., Xiao, R., Dietary pattern and antioxidants in plasma and erythrocyte in patients with mild cognitive impairment from China. Nutrition 32: 193-198. 2016.
 
[62]  Özdemir, P.G., Selvi, Y., Özkol, H., Aydın, A., Tülüce, Y., Boysan, M., Beşiroğlu, L., The influence of shift work on cognitive functions and oxidative stress. Psychiatry Res 30: 1219-1225. 2013.
 
[63]  Aydemir, Ö., Çubukçuoğlu, Z., Erdin, S., Taş, C., Onur, E., Berk, M., Oxidative stress markers, cognitive functions, and psychosocial functioning in bipolar disorder: an empirical cross-sectional study. Rev Bras Psiquiatr 36: 293-297. 2013.
 
[64]  Ruan, H., Wu, C.W., Social interaction-mediated lifespan extension of Drosophila Cu/Zn superoxide dismutase mutants. Proc Natl Acad Sci. U S A 105: 7506-7510. 2008.
 
[65]  Darwish, R.S., Amiridze, N., Arabi, B., Nitrotyrosine as an oxidative stress marker: evidence for involvement in neurologic outcome in human traumatic brain injury. J. Trauma. 63 (2): 439-442. 2007.
 
[66]  Frye, R..E, Delatorre, R., Taylor, H., Slattery, J., Melnyk, S., Chowdhury, N., James, S.J., (2013). Redox metabolism abnormalities in autistic children associated with mitochondrial disease. Transl Psychiatry 3: e273. 2013.
 
[67]  Garrido, M., González-Flores, D., Marchena, A..M, Prior, E., García-Parra, J., Barriga, C., Rodríguez Moratinos, A.B., A lycopene-enriched virgin olive oil enhances antioxidant status in humans. J Sci Food Agric 93 (8): 1820-1826. 2013.
 
[68]  Bravo, R., Matito, S., Cubero, J., Paredes, S.D., Franco, L., Rivero, M., Rodríguez, A..,B, Barriga C., (2013). Tryptophan-enriched cereal intake improves nocturnal sleep, melatonin, serotonin, and total antioxidant capacity levels and mood in elderly humans. Age (Dordr) 35: 1277-1285.
 
[69]  Vinson, J.A., Demkosky, C.A., Navarre, D.A., Smyda, M.A., High-antioxidantpotatoes: acute in vivo antioxidant source and hypotensive agent in humans after supplementation to hypertensive subjects. J Agric Food Chem 60: 6749-6754. 2012.
 
[70]  Todorovic, V., Redovnikovic, I.R., Todorovic, Z., Jankovic, G., Dodevska, M., Sobaji, S., Polyphenols, methylxanthines, and antioxidant capacity of chocolates produced in Serbia. Journal of Food Composition and Analysis 41: 137-143. 2005.
 
[71]  Sun, Y., Hayakawa, S., Ogawa, M., Fukada, K., Izumori, K., Influence of a rare sugar, d-Psicose, on the physicochemical and functional properties of an aerated food system containing egg albumen. J Agric Food Chem 56: 4789-4796. 2008.
 
[72]  Ajibo, G.F., Oyerinde, V.O., Adeniyan, O.S., Physiochemical and antioxidant properties of whole-wheat biscuits incorporated with Moringa oleifera leaves and cocoa powder. Journal of Scientific Research & Reports 7: 195-206. 2015.
 
[73]  Kamiloglu, S., Pasli, A.A., Ozcelik, B., Van Camp,. J, Capanoglu, E., Influence of different processing and storage conditions on in vitro bioaccessibility of polyphenols in black carrot jams and marmalades. Food Chem 186: 74-82. 2015.
 
[74]  Poiana, M.A., Alexa, E., Mateescu, C., Tracking antioxidant properties and color changes in low-sugar bilberry jam as effect of processing, storage and pectin concentration. Chem Cent J 6: 4. 2012.
 
[75]  Poiana, M.A., Munteanu, M.F., Bordean, D.M., Gligor, R., Alexa, E., Assessing the effects of different pectins addition on color quality and antioxidant properties of blackberry jam. Chem Cent J 7:121. 2013.
 
[76]  Bhattacharyya, A., Chattopadhyay, R., Mitra, S., Crowe, S.E., Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 94: 329-354. 2014.
 
[77]  Miglio, C., Pelus, I., Raguzzini, A., Villaño, D..V, Cesqui, E., Catasta,. G, Toti, E., Serafin, M., Fruit juice drinks prevent endogenous antioxidant response to high-fat meal ingestion. Br L Nutr 111(2): 294-300. 2014.
 
[78]  Papadia, S., Soriano, F.X., Léveillé, F., Martel, M.A., Dakin, K.A., Hansen, H.H., Kaindl, A., Sifringer, M., Fowler, J., Stefovska, V., McKenzie, G., Craigon, M., Corriveau, R., Ghazal, P., Horsburgh, K., Yankner, B.A., Wyllie, D.J., Ikonomidou, C., Hardingham, C.E., Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci 11: 476-487. 2008.
 
[79]  Liu, S., Li, X., Wu, S., He, J., Pang, C., Deng, Y., Dong, R., Fungal pretreatment by Phanerochaete chrysosporium for enhancement of biogas production from corn stover silage. Appl Biochem Biotechnol 174: 1907-1918. 2014.
 
[80]  Giordano, S., Darley-Usmar, V., Zhang, J., Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease. Redox Biol 82-90. 2013.
 
[81]  Hee-Tae, R., Su-Youn, C., Wi-Young, S., Obesity promotes oxidative stress and exacerbates blood-brain barrier disruption after high-intensity exercise. J Sport Health Sci 1-6. 2016.
 
[82]  Kern, J.K., Geier, D.A., Sykes, L.K., Geier, M.R., Evidence of neurodegeneration in autism spectrum disorder. Transl Neurodegener. 2(1):17. 2013.
 
[83]  Matayatsuk, C., Lee, C.Y., Kalpravidh, R.W., Sirankapracha, P., Wilaira, P., Fucharoen, S., Halliwell, B., Elevated F2-isoprostanes in thalassemic patients. Free Radic Biol Med 43: 1649-1655. 2007.
 
[84]  Soto-Méndez, M.J., Aguilera, C.M., Mesa, M.D., Campaña-Martín, L., Martín-Laguna, V., Solomons, N.W., Schümann, K., Gil, Á., Strong Associations Exist among Oxidative Stress and Antioxidant Biomarkers in the Circulating, Cellular and Urinary Anatomical Compartments in Guatemalan Children from the Western Highlands. PLoS One 11(2016) e0146921. 2016.
 
[85]  Ghanizadeh, A., Akhondzadeh, S., Hormozi, M., Makarem, A., Abotorabi-Zarchi, M., Firoozabadi, A., Glutathione-related factors and oxidative stress in autism, a review. Curr Med Chem 19: 4000-4005. 2012.
 
[86]  Baron-Cohen, S., Lombardo, M.V., Auyeung, B., Ashwin, E., Chakrabarti, B., Knickmeyer, R., Why are autism spectrum conditions more prevalent in males? PLoS Biol 9: e100108. 2012.