World Journal of Preventive Medicine
ISSN (Print): 2379-8823 ISSN (Online): 2379-8866 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
World Journal of Preventive Medicine. 2019, 7(1), 1-8
DOI: 10.12691/jpm-7-1-1
Open AccessReview Article

Bitter Foods are Sometimes Better

ADENIYI Paulina O.1,

1Institute of Agricultural Research and Training, Obafemi Awolowo University, Ibadan, Nigeria

Pub. Date: January 22, 2019

Cite this paper:
ADENIYI Paulina O.. Bitter Foods are Sometimes Better. World Journal of Preventive Medicine. 2019; 7(1):1-8. doi: 10.12691/jpm-7-1-1


The instinct of every human being is naturally inclined towards the consumption of sweet-tasting foods neglecting the fact that foods that taste bitter are better consumed sometimes. The bitter components of some foods are of immense medicinal value; hence, this is a review of some bitter foods, their bitter components and possible medicinal values. HINARI, Scopus and Goole scholar were accessed in this study. All the bitter foods compiled are plant foods and they include: cruciferous vegetables; chicory; chard; artichokes, asparagus, lettuce; bitter leaf; coffee; cocoa powder; ginger; bitter melon; cucumber; olives; charyotes and clove basil. The main bitter components of these foods are: glucosinolates; sesquiterpene lactones (lactucin and lactucopicrin); flavonoids (myricetin, naringenin, kaempferol, apigenin, cynarin); furostanol saponin and other phenolic compounds such as chlorogenic acids (hydroxycinnamic acid and quinnic acid); theobromine (methylxanthines); gingerol/ shogaol; cucurbitacin and oleuropein. These have been reported to be bioactive and exert the following effects: anti-parasitic; antimicrobial; antibacterial; antioxidant, anti-inflammatory; anti-diabetic; hypolipidemic; anti-cancer; protect against toxicity; neuro-protective; anti-depression; anti-anxiety; anti-hypertension; anti-obesity, anti-allergy; anti-nausea, anti-arthritis; anti-viral, analgesic; anti-pyretic; anti-ulcer; gastro-protective; sedative and fertility enhancer. Consumption of these bitter foods may therefore be an effective measure towards improving public health globally since prevention is always better than cure.

bitter foods bitter components disease prevention public health

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  McDaniel A.H. and Reed D.R. (2004). The human sweet tooth and its relationship to obesity. In: Genomics and Proteomics in Nutrition. CRC Press, U.S.A PP51-82.
[2]  Dugas C., Perron J., Marc J., Weisnagel S.J and Robitaille J. (2019). Association between early introduction of fruit juice during infancy and childhood consumption of sweet-tasting foods and beverages among children exposed and unexposed to gestational diabetes mellitus in utero. Appetite; 132: 190-195.
[3]  Taylor S.L., McGuckin M.A., Wesselingh S.and Rogers G.B. (2018). Infection’s sweet tooth: how glycans mediate infection and disease susceptibility. Trends in Microbiology; 26(2): 92-101.
[4]  Roulette C.J., Njau E.F.A., Quinlan M.B., Quilan R.J. and Call D.R. (2018). Medicinal foods and beverages among Maasai agro-pastoralists in northern Tanzania. Journal of Ethnopharmacology; 216: 191-202.
[5]  Pilleron S., Sarfari D., Janssen-Hejinen M., Vignat J., Ferlay J., Bray F. and Soerjomataram I. (2018). Global cancer incidence in older adults, 2012 and 2035: A population-based study. International Journal on Cancer; 144(1): 49-58.
[6]  Cho N.H., Shaw J.E., Karuranga S., Huang Y., do Rocha Fernandes J.D., Ohlragge A.W. and Malanda B. (2018). IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice; 138: 271-281.
[7]  Xie Y., Bowe B., Mokolad A.H., Xian H., Yan Y., Li T., Maddukuri G., Tsai C.Y., Floyd T. and Al-Aly Z. (2018). Analysis of the global burden of disease study highlights the global, regional and national trends of chronic kidney disease epidemiology from 1990 to 2016. Kidney International; 94(3): 567-581.
[8]  Forouzanfar M.H., Liu P. and Roth G.A. (2017). Global burden of hypertension and systolic blood pressure of at least 110 to 115mmHg, 1990-2015. Journal of American Medical Association; 317 (2): 165-182.
[9]  Fowkes F.G.R., Rudan D., Rudan I., Aboyan S.V. and Denenberg J.O. (2013). Comparison of global estimate of prevalence and risk factors of peripheral artery disease in 2000 and 2010: a systematic review and analysis. The LANCET; 382(9901): 1329-1340.
[10]  Sigerist H.E (2018). Civilization and disease. Cornell University Press, U.S.A.
[11]  Stanaway J.D., Flaxman A.D., Naghavi M., Fitzmaurice C., Vos T. and Abubakar I (2016). The global burden of viral hepatitis from 1990 to 2013: Findings from the Global Burden of Disease Study 2013. The LANCET; 388(10049): 1081-1088.
[12]  Kaakoush N.O.,Castano-rodriguez N., Mitchell H.M. and Man S.M. (2015). Global epidemiology of Campylobacter infection. Clinical Microbiology Review; 28(3) 687-720.
[13]  SanlierN., and Guller Saban M. (2018). The benefits of Brassica vegetables on human health. Journal of Human health Research; 1(1): 104-113.
[14]  Abbadu B., Lucas C.R., Riedl K.M., Clinton S.K. and Mortazavi A. (2018). Cruciferous vegetables, isothiocyanates and bladder cancer prevention. Molecular Nutrition Food Research; 62(18).
[15]  Pan J.H., Abernathy B., Kim Y.J., Lee j.h., Kim J.H. and Shin E. (2018). Cruciferous vegetables and colorectal cancer prevention through micro RNA regulation: A review. Critical Review in Food Science and Nutrition; 58(12): 2026-2038.
[16]  Russo M., Spagnuolo C., Daglia M. and Sobarzo-Sanchez E. (2018). NrF2 targeting by sulforaphane: A potential therapy for cancer treatment. Critical Reviews in Food Science and Nutrition; 58(8): 1391-1405.
[17]  Suresh S., Waly M.I. and Rahman N.S. (2018). Broccoli (Brassica oleracea) as a preventive biomaterial for cancer. In; Waly M. and Rahman M. (Eds). Bioactive Components, Diet and Medical Treatment in Cancer prevention. Springer, Cham, pp 75-87.
[18]  Zhang Z., Bergan R., Shannon J., Slatore C.G., Bobe G. and Takata Y. (2018). The role of cruciferous vegetables and isothiocyanates for lung cancer prevention: current status, challenges and future research directions. Molecular Nutrition Food Research; 62(18).
[19]  Soundarajan P. and Kim J.S. (2018). Anti-carcinogenic glucosinolates in cruciferous vegetables and their antagonistic effects on prevention of cancers. Molecules; 23(11).
[20]  Abdull-Razis A.F., Kousna N. and Ioannides C. (2018). Isothiocyanates and Xenobiotic detoxification. Molecular Nutrition Food Research; 62(18).
[21]  Mitsiogihnni M., Amery T., Franco R., Zoumpourns V. And Panayiotidis M.I. (2018). From chemo prevention to epigenetic regulation: The role of isothiocyanates in skin cancer prevention. Pharmacology and Therapeutics; 190: 187-201.
[22]  Conde-Rioll M., Gajate C., Fernandez J.J., Villa-Pulgarin J.A., Napolitano J,G., Norte M. and Mollinedo F. (2018). Antitumor activity of Lepidium latifolium and identification of the epithionitrile-1-cyano-2,3-epithiopropane as its major active component. Molecular Carcinogenesis; 57(3): 347-360.
[23]  Kaur P. and Kaur J. (2018). Epigenetic impact of indoles and isothiocyanates on cancer prevention. In: Patel V. And Preedy V. (Eds). Handbook of Nutrition, Diet and Epigenetics. Springer, Cham, pp 1-15.
[24]  Eastham L.L., Howard O.M., Balachandran P., Pasio D.S. and Claudio P.P. (2018). Eating green: Shining light on the use of dietary phytochemicals as a modern approach in the prevention and treatment of head and neck cancers; 18(3): 182-191.
[25]  Ibrahim M.D., Kntayya S.B., Ain N.M., Iori R., Ioannides C. and Razis A.F.A. (2018). Induction of apoptosis and cytotoxicity by Raphasatin in human breast adenocarcinoma MCF-7 cells. Molecules; 23(12).
[26]  Jiang X., Liu Y., Ma L., Ji R., Qu Y., Xin Y. and Lu G. (2018). Chemopreventive activity of sulforaphane. Drug Design, Development and Therapy; 12: 2905-2913.
[27]  Doyaun Naidu S., Suzuki T., Yamamoto M., Fahey J.W. and Dinkova-Kostova A.J. (2018). Phenethyl isothiocyanate, a dual activator of transcription factors NRf2 and HSf1.Molecular Nutrition Food Research; 62(18).
[28]  Su X., Jiang X., Meng L., Dong X., Shen Y. and Xin Y. (2018). Anticancer activity of sulforaphane: The epigenetic mechanisms and the Nrf2 signalling pathway. Medicine and Cellular Longevity.
[29]  Sharma D. and Sangha G.K. (2018). Anti oxidative effects of aqueous extract of broccoli sprouts against Triazophos-induced hepatic and renal toxicity in female Wistar rats. Journal of Applied Biomedicine; 16(2): 100-110.
[30]  El-Wakf A.M., Abdrabouh A.E. and Elgarieb A.M. (2018). Effectiveness of steamed and cooked broccoli to attenuate bone marrow injury and suppressed haemopoiesis in male rats exposed to petrol vapours. International Journal of Environment Studies.
[31]  Hajra S., Patra A.R., Basu A.R. and Bhattacharya S. (2018). Prevention of doxorubiun (DOX)-induced genotoxicity and cardiotoxicity: Effect of plant derived small molecule indole-3-carbinol (I3C) on oxidative stress and inflammation. Biomedicine and Pharmacotherapy; 101: 228-243.
[32]  Thangapandiyan S.T., Ramesh M., Miltonprabu S., Hema T., Naudhini V. and Bavithrajothi G. (2018). Protective role of sulforaphane against multi organ toxicity in rats: An in vivo and in vitro review study. Journal of Research and Reviews in Toxicology; 8(1): 1-9.
[33]  Ali S.I., Gopalakrishnan B. and Venkatesalu V. (2018). Chicory (Cichorium intybus) and wormwood (Artemisia absinthium) extracts exhibit strong larvicidal activity against mosquito vectors of malaria, dengue fever and filariasis. Parasitology International; 67(6): 781-786.
[34]  Pena-Espinoza M., Valente A.H., Thamsborg SM., Simonsen H.T., Boas U.,Enemark H.L., Lopez-Munoz R. and Williams A.R.(2018). Anti parasitic activity of chicory (Cichorium intybus) and its natural bioactive compounds in livestock, a review. Parasites and Vectors; 11:475-482.
[35]  Pena-Espinoza M., Boas U., Williams A., Thamsborg S.M., Simonsen H.T and Enemark H.L. (2015). Sesquiterpene lactone containing extracts from two cultivars of forage chicory (Cichorium intybus) show distinctive chemical profiles and in vitro activity against Ostertagia ostergi. International Journal for Parasitology: Drugs and Drug Resistance; 5(3): 191-200.
[36]  Williams A.R., Pena-Espinoza M.A., Boas U and Simonsen H.T. (2017). Anti helmintic activity of chicory (Cichorium intybus): in vitro effects on swine nematodes and relationship to sesquiterpene lactones composition. Parasitilogy; 143(6): 770-777.
[37]  Pena-Espinoza M., Thamsborg S.M., Desrues O. and Hansen T.V.A. (2016). Anti helmintic effects of forage chicory (Cichorium intybus) against gastrointestinal nematode parasites in experimentally infected cattle. Parasitology; 143(10): 1279-1293.
[38]  Fan H., Chen J., Lv L., Ao X., Wu Y., Ren B. and Li W. (2017). Isolation and identification of terpenoids from chicory roots and their inhibitory activities against yeast α-glucosidase. European Food Research and Technology; 243(6): 1009-1017.
[39]  Shim D.W., Han J.W., Ji Y.E., Shin W.Y., Koppular S., Kim M.K., Kim T.K., Park P.J., Kang T.B. and Lee K.H. (2016). Cichorium intybus Linn extract prevents type 2 diabetes through inhibition of NLRP3 inflammasome activation. Journal of Medicinal Food; 19(3).
[40]  Ren Y., Yu J. and Douglas Kinghorn A. (2016). Development of anticancer agents from plant-derived sesquiterpene lactones. Current Medicinal Chemistry. 23(23): 2397-2420.
[41]  Siedle B., Garcia-Pineres A.J., Murillo R., Schulte-Monting J., Castro V., Rungeler P., Klaas C.A., DaCosta F.B., Kisiel W. and Merfort I. (2004). Quantitative structure-activity relationship of sesquiterpene lactones as inhibitors of the transcription factor NF-kβ. Journal of Medicinal Chemistry; 47(24): 6042-6050.
[42]  Holmann M.S.N., Longh C., Balbinot D.T., Guazelli C.F.S., Navaro S.A., Zarpelon A.C., Casagrande R., Arakawa N.S. and Verri W.A. (2016). Sesquiterpene lactones: structural diversity and perspectives as anti inflammatory molecules. Studies in Natural Products Chemistry; 49(7): 243-264.
[43]  Petropoulos S.A., Fernandes A., Barros L. and Ferreira I.C.F.R (2018). A comparison of the phenolic profile and antioxidant activity of different Cichorium spinosum L. ecotypes. Journal of the Science of Food and Agriculture; 98(1): 183-189.
[44]  Saeed M., Abd El-Hack M.E., Alagawani M., Arain M.A., Arif M., Mirza M.A., Naveed M., Chao S., Sarwar M., Sayab M. and Dhama K. (2017). Chicory (Cichorium intybus) herb: Chemical composition, pharmacology, nutitional and healthical implications. International Journal of Pharmacology; 13(4): 351-360.
[45]  Lim T.K. (2016). Beta vulgaris. In: Edible mrdicinal and non-medicinal plants. Springer Dordrecht pp 26-68.
[46]  Hashem AN., Soliman M.S., Hamed M.A., Swilam N.F., Lindeguist U. And Nawwarm M.A. (2016). Beta vulgaris subspecies cicla var. Flavescens (Swiss chard): flavonoids, hepatoprotective and hydrolipidemic activities. Die Pharmazie; 71(4): 227-232.
[47]  Ustunday U.V., Tunali S., Alev B., Ipekci H., Emekli-Alturfan E., Akbay T.T., Yanarday R. and Yarat A. (2016). Effects of chard (Beta vulgaris var. Cicla) on cardiac damage in valproic acid-induced toxicity. Journal of Food Biochemistry; 40(2): 132-139.
[48]  Hassan S.K., El-Sammad N.M., Abdel-Halim A.H., Monsa A.M., Khalil W.K.B. and Anwar N. (2018). Flavonoids-rich extract of Beta vulgaris subsp. Cicla L. var. Flavescens leaf, a promising protector against Gentamicin-induced nephrotoxicity and hepatotoxicity in rats. International Journal of Pharmacology; 14(5): 652-666.
[49]  El-Beltagi H.S., Mohamed H.J., Megahed B.M.H., Gamal M. and Safwat O. (2018). Evaluation of some chemical constituents, antioxidant, antibacterial, anticancer activities of Beta vulgaris L. root Fresenius Environmental Bulletin; 27(9): 6369-6378.
[50]  Trifunovic S., Topalovic A., Knezevic M. and Vajs V. (2015). Free radicals and antioxidants: antioxidative and other properties of Swiss chard (Beta vulgaris L. subsp cicla). Agriculture and Forestry; 61(2): 73-97.
[51]  Hajihosseini S., Setorki M. and Hooshmandi Z. (2017). The antioxidant activity of Beta vulgaris leaf extract in improving scopolamine-induced spatial memory disorders in rats. Avicenna Journal of Phytomedicine; 7(5): 417-425.
[52]  Hooshmandi Z. and Setorki M. (2018). The effect of ethanol extract of Beta vulgaris leaves on rats with scopolamine-induced cognitive deficiency. Zaheda Journal of Research in Medical Sciences; 20(9): e68966.
[53]  Oztay F., Sacan O., Kayalar O., Bolkert S., Ipci Y and Kabasakal L. (2015). Chard (Beta vulgaris var. Cicla) extract improved hyperglycemia-induced oxidative stress and surfactant associated protein alterations in rat lungs. Pharmaceutical Biology; 53(11): 1639-1646.
[54]  Schienle A., Arenday M. and Schwab D. (2015). Disgust responses to bitter compounds: The role of disgust sensitivity. Chemosensory Perception; 8(4): 167-173.
[55]  D’Antuono I.. DiGiola F., Linsalata V., Rosskopt E.N. and Cardinal A. (2018). Impact on health of artichoke and Cardion bioactive compounds: content, bioaccessibility, bioavailability and bioactivity. In: Petropoulos S.A., Ferreira C.F.R. and Barros L. (Eds.) Phytochemicals in Vegetables. Betham Science Publishers, United Arab Emirates pp 373-403.
[56]  Salekzamani S., Ebrahimi-Marneghani M. and Rezazadeh K. (2018). The antioxidant activity of artichokes (Cynara scolymous): A systematic review and metal-analysis of animal studies. Phytotherapy Research; 33(1): 55-71.
[57]  Kollia E., Markaki P., Zoumpoulakis P. and Proestos C. (2016). Antioxidant activity of Cynara caudunculas L. extraction techniques. Natural Products Research; 31(10): 1163-1167.
[58]  Numan I.T., Hamad M.N., Fadhil A.A. and Najim S.M. (2016). The possible cardio-protective effects of ethanolic artichoke extract against 5-Flourouracil-induced cardiac toxicity in rats. Iraqi Academic Scientific Journal; 25(1): 1-5.
[59]  Rondeanelli M., Monteferrario F., Perma S., Faliva M.A. and Opizzi A. (2015). Health-promoting properties of artichoke in preventing cardiovascular diseases by its lipid and glycemic reducing actions. International Journal of Cardiopulmonary Medicine and Rehabilitation; 80(1).
[60]  Mageid M.M.A., Hussein S.E.D., Zaki S.M. and EL Said R.M. (2016). Artichoke (Cynara scolymus L.) leaves and heads extracts as hypoglycaemic and hypocholesterolemic in rats. Journal of Food and Nutrition Research; 4(1): 60-68.
[61]  Kawano K., Sakai K., Sato H. and Sakamura S. (2014). A bitter principle of Asparagus: Isolation and structure of Furostanol saponins in asparagus storage root. Agricultural and Biological Chemistry; 39(10): 1999-2002.
[62]  Mau S., Gao W., Zhang Y., Huang L. and Liu C. (2010). Chemical study and medical application of saponins as anticancer agents, Fitoterapia; 81(7): 703-714.
[63]  Shen Y., Xu C.L., Xuan W.D., Li H.L., Liu R.H., Xu X.K. and Chen H.S. (2011). A new furostanol saponin from Asparagus cochinchinensis. Archives of Pharmaceutical Research; 34(10): 1587-1591.
[64]  Jaramillo-Carmona S., Gullen-Bejarano R.K., Jimenez-Araujo A., Rodriguez-Arcos R. and Lopez S. (2018). In vitro toxicity of asparagus saponins in distinct multidrug-resistant colon cancer cells. Chemistry and Biodiversity; 15(11).
[65]  Hamdi A., Jaramillo-Carmona S., Beji R.S., Tej R., Zaoui S., Rodrigues-Arcos R.,Jimenez-Araujo A., Kasri M., Lacheal M., Bouraoui N.K. and Gullen-Bejarano R. (2017). The phytochemical and bioactivity profiles of wild Asparagus albus L. plant. Food Research International; 99(1): 720-729.
[66]  Singh L., Kumar A., Choudhary A. and Singh G. (2018). Asparagus racemosus: The plant with immense medicinal potential. Journal of Pharmacognosy and Phytochemistry; 7(3): 2199-2203.
[67]  Thakur S. and Sharma D.R. (2015). Review on Medicinal plant: Asparagus adscendens Roxb. International Journal of Pharmaceutical Science and Health Care; 5(3): 82-96.
[68]  Malik J., Kaur J. and Choudhary S. (2018). Standardized extract of Lactuca sativa Linn. and its fractions abrogate scopolamine-induced amnesia in mice: A possible cholinergic and antioxidant mechanism. Nutritional Neuroscience; 21(5): 361-372.
[69]  Hong K.B., Han S.H., Park Y., Suh H.J. and Choi H.S. (2018). Romaine lettuce/ skullcap mixture improves sleep behaviour in vertebrate models. Biological and Pharmaceutical Science; 41(8): 1269-1276.
[70]  Anilakumar K.R., Harsha SN., Mallesha S. and Sharma R.K. (2017). Lettuce: a promising leafy vegetable with functional properties. Defence Life Science Journal; 2(2): 178-185.
[71]  Imaga N.O.A. and Bamigbetan D.O. (2013). In vivo biochemical assessment of aqueous extracts of Vernonia amygdalina. International Journal of Nutrition and Metabolism; 5(2): 22-27.
[72]  Okunlola G.O., Jimoh M.A., Olatunji O.A., Rufai A.B. and Omidiran A.O. (2018). Proximate analysis, numeral composition and antioxidant properties of bitter leaf and scent leaf. International Journal of Vegetable Science.
[73]  Asante D.B., Henneh I.T., Acheampong D.O., Kyei F., Adokoh C.K., Ofori E.G., Dorney N.K, Adakudugu E., Tangella L.P. and Ameyaw E.O. (2019). Anti inflammatory, antinociceptive and antipyretic activity of young and old leaves of Vernonia amygdalina. Biomedicine and Pharmacotherapy; 111: 1187-1203.
[74]  Tekou F.A., Kante D., Nguckovo P.T., Woumbo C.Y. and Oben J.E. (2018). Effect of cooking treatments on the phytochemical composition and antidiabetic potential of Vernonia amygdalina. Food Science and Nutrition; 6(6): 1684-1691.
[75]  Otamere H.O., Osifo U.C., Nwaogwugwu C.C., Balogun J.J., Akpamu U. and Ujaddughe M.O. (2018): Effect of aqueous extract of pumpkin leaf (Telfairia occidentalis) and bitter leaf (Vernonia amygdalina) on some spermatozoa characters of male Wistar rats. Annals of Medical and Surgical Practice (3(2): 90-97.
[76]  Colombo R. and Papeti A. (2019). An outlook on the role of decaffeinated coffee in neuro-degenerative diseases. Critical Reviews in Food Science and Nutrition.
[77]  Beder-Belkhiri W., Zeghichi-Hamri S., Kadri N., Boulekbache-Nakhlouf L., Cardose S., Oukhmanou-Bensidhoum S. and Madani K. (2018). Hydroxycinnamic acids profiling, in vitro evaluation of total phenolic compounds, caffeine and antioxidant properties of coffee imported, roasted and consumed in Algeria. Mediterranean Journal of Nutrition and Metabolism; 11(1): 51-63.
[78]  Reis C.E.G., Paira C.L.R.S., Amato A.A. and Lofrano-Porto A. (2018). Decaffeinated coffee improves insulin sensitivity in healthy men. British Journal of Nutrition; 119(9): 1029-1038.
[79]  Gvozdjakova a., Singh R., Singh R.B., Takahashi T., Fedacko J., Hristova K., Wilczynoka A., Mojitova M. and Mojto V. (2019). Cocoa consumtion and prevention of cardiometabolic diseases. In: The role of functional food security in Global Health; 2019: 317-345. Academic Press, U.S.A.
[80]  Patel K. and Watson R.R. (2018). Chocolate and its components’ effect on cardiovascular diseases. In: Lifestyle in heart health and diseases. Academic Press, U.S.A. pp255-266.
[81]  Squiccianni M.P. and Swinnen J. (2010).The Economics of Chocolate. Oxford University Press, United Kingdom. Pp 134-172.
[82]  Loung C.Y., Rasmussen A.N. and Hoskin D.W. (2019). The phenolic gingerols and gingerol-derived shogaols: features and properties related to the prevention and treatment of cancer and chronic inflammation. In; Polyphenols in Plants. Academic Press, U.S.A. Chapter 24, pp 395-405.
[83]  Almatroudi A., Alsahli M.A., Alrumalhi F., Allermailen K.S. and Rahmani A.H. (2019). Ginger: a novel strategy to battle cancer through modulating cell signalling pathways. Current Pharmaceutical Biotechnology.
[84]  Fu Y.W., Wang B., Zhang Q.Z., Xu D.H., Liu Y.M., Hou T.L. and Gao S.Q. (2019). Efficacy and antiparasitic mechanism of 10-gingerol isolated from ginger (Zingiber officinale) against Ichthyophthirius multifiliis in grass carp. Veterinary Prasitology; 265: 74-84.
[85]  Eshghian R., Mazaheri M., Ghanadian M., Rouholam M.S., Feizi A. and Babaeian M (2019). The effect of frankincense and ginger on heavy menstrual bleeding: A randomized, placebo, controlled clinical trial. Complementary Therapies in Medicine; 42: 42-47.
[86]  Badawy G.M., Atallah M.N. and Sakr S.A. (2019). The ameliorative role of ginger administration against Gabapentin-induced hepatotoxicity in rat foetuses. European Journal of Pharmaceutical and Medical Research; 6(1): 622-631.
[87]  Arablou T. and Aryaeian S. (2018). The effect of ginger, an ancient medicinal plant, on improving blood lipids. Journal of Herbal Medicine; 12: 11-15.
[88]  Maharlouei N., Tabrizi R., Lankarani K.B., Rezaiagnzadeh A., Akbari M. and Kolahdooz F. (2018). The effects of ginger intake on weight loss and metabolic profiles among overweight and obese subjects: A systematic review and meta-analysis of randomized controlled trials. Critical Reviews in Food Science and Nutrition.
[89]  Lete I. And Allue J. (2016). The effectiveness of ginger in the prevention of nausea and vomiting during pregnancy and chemotherapy. Integrative Medicinal Insights; 11:11-17.
[90]  Nile S.H. and Park S.W.,(2015). Chromatographic analysis, antioxidant, anti inflammatory and xanthane oxidase inhibitory activities of ginger extracts and its reference compounds. Industrial Crops and Products; 70: 238-244.
[91]  Khandouzi N., Shidfar F., Rajab A., Rahideh T., Hossein P. and Tahen M.M. (2015). The effects of ginger on fasting blood sugar, haemoglobin, A1c, apolipoprotein B, apolipoprotein A-I and malondialdehyde in type 2 diabetic patients. Iranian Journal of Pharmaceutical Research; 14(1): 131-140.
[92]  Tan S.P., Kha T.C., Parks S.E. and Roach P.D. (2015). Bitter melon (Momordica charantia L.) bioactive composition and health benefits: A review. Food Reviews International; 32(2): 181-202.
[93]  Saeed F., Afzaal M., Niaz B., Arshad M.U., Tufail T. and Hussain M.B. (2018). Bitter melon (Mormodica charantia), a natural healthy vegetable. International Journal of Food Properties; 21(1): 1270-1290.
[94]  Naeem M.Y., Ozgen S., Amin K. and Selamoglu Z. (2018). Antidotic potency of bitter gourd (Mormodica charantia). Journal of Traditional Medicine and Clinical Naturopathy; 7:268-275.
[95]  Janagal B., Singh C., Purvia R.P. and Adlakha M (2018). A review of hypoglycaemic effect of Mormodica charantia W.S.R. to Madhumeh. International Journal of Ayurveda and Pharma Research; 6(1): 50-54.
[96]  Akhter R., Rasel I.H and Islam M.S. (2018). Antidiabetic effect of bitter melon in alloxan-induced diabetic rat. Research in Agriculture, Livestock and Fisheries; 5(3): 373-379.
[97]  Sandikapura M.J., Nyanathulta S., and Noordin M.I. (2018). Comparative antioxidant and antidiabetic effects of Syzygium polyanthum leaf and Mormodica charantia fruit extracts. Pakistan Journal of Pharmaceutical Sciences; 31: 623-635.
[98]  Abdel-Salam A.M. and Al-Damegh M.A. (2018). Antidiabetic and immunoprophylactic effects of Camel milk filterate and bitter gourd juice against alloxan-induced oxidative stress and diabetes in rats. International Journal of Pharmacology; 14(3): 397-406.
[99]  Rayamohan S., Sridhar R., Hemalatha S. and Sriram P. (2018). Effect of Mormodica charantia on serum biochemical parameters in experimentally induced atypical acinar cell tumors in male wistar rats. Annals of Phytomedicine; 7(1): 152-157.
[100]  May L.S., Sanip Z., Shokri AA., Kadri A.A. and Zalazin M.R.M. (2018). The effects of Mormodica charantia (bitter melon) supplementation in patients with primary knee osteoarthritis: A single-blinded, randomized controlled trial. Complementary Therapies in Clinical Practice; 32: 181-186.
[101]  Horie H., Ito H., Ippoushi K., and Azuma K. (2007). Cucurbitacin-C- bitter principle in cucumber (Cucumis sativus). Plant. The Japan Agriculture, Forestry and Fisheries Research Information Technology Center (
[102]  Fatima N., Fatmi N., Shahzada M.Z., Sharma S., Kumar R., Ali M. and Kumar A. (2018). Ameliorating effect of Cucumis sativus (Cucumber) against arsenic-induced toxicity in mice. Open Journal of Pathology; 8: 78-84.
[103]  Kaushik U., Aeri V., and Mir S.R. (2015). Cucurbitacins – An insight into medicinal leads from nature. Pharmacognosy Review; 9(17): 12-18.
[104]  Park C.S., Lim H., Han K.J., Baek S.H., Sohn H.O., Lee D.W., Kim Y.G., Yuu H.Y., Baek K.J. and Kwon N.S. (2004). Inhibition of nitric oxide generation by 23, 24-dihydrocucurbitacin-D in mouse peritoneal macrophages. Journal of Pharmacology and Experimental Therapy; 309(2): 705-710.
[105]  Tannin-Spitz T., Bergman M. and Grossman S. (2007). Cucurbitacin glucosides: antioxidant and free radical scavenging activities. Biochemistry and Biophysics Research Communications; 364(1): 181-186.
[106]  Omar S.H. (2010). Oleuropein in olice and its pharmacological effects. Scientia Pharmaceutica; 78(2): 133-154.
[107]  Ray N.B., Hilsabeck K.D., Karagiannis T.C. and McCord D.E. (2019). Bioactive olive oil polyphenols in the promotion of health. In : Security in Global Health. Academic Press, U.S.A. pp 623-637.
[108]  Omar S.H. (2010). Cardioprotective and neuroprotective roles of oleuropein in olive. Saudi Pharmaceutical Journal; 18(3): 111-121.
[109]  Kountouri A.M., Mylona A., Kaliora A.C. and Andrikopoulos N.K. (2007). Bioavailability of the phenolic compounds of the fruits of Olea europaea : impact on plasma antioxidant status in humans. Phytomedicine; 14(10): 659-667.
[110]  Oboh F.O.J., Madsodje H.I., Enabulele S.A. (2009). Nutritional and antimicrobial properties of Ocimum gratissimum leaves. Journal of Biological Sciences; 9(4): 377-380.
[111]  Silva L.L., Heldwein G., Reetz L.G.B., Homer R., Mallman C.A. and Heizmann B.M. (2010). Chemical composition, antibacterial activity in vitro and brine-shrimp toxicity of the essential oil from inflorescences of Ocimum gratissimum L. Brazilian Journal of Pharmacognosy; 20(5): 700-705.
[112]  Nwankwo I.U., Onwuakor C.E. and James O.J. (2015). Synergistic effect of the combined ethanolic and aqueous extracts of Garcinia kola and Ocimum gratissimum on Methicillin resistant Staphylococcus aureus and multi drug resistant Pseudomonas aeruginosa. Nature of Pharmaceutical Technology; 5(1): 1-9.
[113]  deLima Boijink C., Queiroz C.A., Chagas E.C., Chaves F.C.M. and Inoue L.A.K.A (2016). Anesthetic and antihelmintic effects of clove basil essential oil for tambagui (Colossoma macropomam). Aquaculture; 457: 24-28.